
 Building Machines that Learn and Think like People 
 Current deep learning methods have achieved remarkable achievement in recognition & control, 
 demonstrating the power of  gradient-based learning  (ERM)  and deep hierarchies of latent 
 variables (many probabilistic machine learning have also developed a lot, but it’s not in the 
 scope of this paper). However, truly human-like learning and thinking machines will have to 
 reach beyond current engineering trends in both what they learn and how they learn it, 
 specifically, we need to incorporate perspective from cognitive scientists & psychology 
 researchers: 

 1.  Ground learning  in intuitive theories of physics and  psychology to support and enrich 
 the knowledge that is learned. 

 2.  Build  causal models of the world  that support explanation  and understanding, rather 
 than merely solving pattern recognition problems. 

 3.  Harness  compositionality and learning-to-learn  to  rapidly acquire and generalize 
 knowledge to new tasks and situations. 

 There are 2 different approaches towards computational intelligence: 
 1.  The  statistical pattern recognition  approach treats  prediction as primary, usually in the 

 context of a specific classification, regression, or control task. 
 a.  Learning is about discovering features that have high-value states in common (a 

 shared label in a classification setting or a shared value in a reinforcement 
 learning setting) across a large, diverse set of training data. 

 2.  The  cognitive model building  focuses on the models  of the world and explanations 
 where learning is the process of model building. 

 a.  Cognition is about using these models to understand the world, to explain what 
 we see, to imagine what could have happened that didn’t, or what could be true 
 that isn’t, and then planning actions to make it so. 

 The difference between pattern recognition and model building, between prediction and 
 explanation, is central to our view of human intelligence.  Just as scientists seek to explain 
 nature, not simply predict it, we see human thought as fundamentally a model building 
 activity  . 

 Assumptions For Computation Intelligence 
 Any computational model of learning must ultimately be grounded in the brain’s biological neural 
 networks.  As long as natural intelligence remains  the best example of intelligence, the project of 
 reverse engineering the human solutions to difficult computational problems will continue to 
 inform and advance AI  . 

 -  Future generations of neural networks will look very different from the current state- 
 of-the-art neural networks. They may be endowed with  intuitive physics  ,  theory of 
 mind  ,  causal reasoning, and more  . 



 -  More structure and inductive biases could be built into the networks or  learned from 
 previous experience with related tasks  , leading to  more human-like patterns of 
 learning and development. 

 -  Learning with few data (learn-to-lean)  : Networks may  learn to effectively search for 
 and discover new mental models or intuitive theories, and these improved models will, in 
 turn, enable subsequent learning, allowing systems that learn-to-learn using previous 
 knowledge to make richer inferences from very small amounts of training data. 

 Reverse engineering human intelligence can usefully inform AI and machine learning, especially 
 for the types of domains and tasks that people excel at, including concept learning, scene 
 understanding, language acquisition, language understanding, speech recognition, creativity, 
 common sense, and general-purpose reasoning. 

 Three Ingredients for Intelligence 
 There are a few sets of ingredients that are important to human intelligence & learning. It can be 
 shown that no-pure computation in one area is good enough,  a collaboration across domains is 
 what makes intelligence  . 

 1.  Developmental start-up software  , or cognitive capabilities  present early and are 
 fundamental to development. These types of inferences further accelerate the learning 
 of new tasks. 

 a.  Intuitive Physics  : infants know that objects will  persist over time and that they 
 are solid and coherent. 

 b.  Intuitive Psychology  : infants understand that other  people have mental states 
 like goals and beliefs, and this understanding strongly constrains their learning 
 and predictions. 

 2.  Model building  is the hallmark of human-level learning,  or explaining observed data 
 through the construction of causal models of the world. 

 a.  The early present capacities for intuitive physics and psychology are also causal 
 models of the world. 

 b.  Primary job of learning is to extend and enrich these models and to build 
 analogous causally structured theories of other domains. 

 c.  Children come with the ability and the desire to uncover the underlying causes of 
 sparsely observed events and to use that knowledge to go far beyond the paucity 
 of the data. 

 d.  It might seem paradoxical that people are capable of learning these richly 
 structured models from very limited amounts of experience. We suggest that 
 compositionality  and  learning-to-learn  are ingredients  that make this type of 
 rapid model learning pos- sible 

 3.  It is  remarkable how fast we can perceive,  think  ,  and  put action in real time  to act. 
 a.  A  model-free  method can accelerate slow  model-based  inferences in 

 perception and cognition. 



 i.  By learning to recognize patterns in these inferences, the outputs of 
 inference can be predicted without having to go through costly 
 intermediate steps (AlphaGo). 

 ii.  Integrating neural networks that “learn to do inference” with rich model 
 building learning mechanisms offers a promising way to explain how 
 human minds can understand the world so well and so quickly. 

 b.  Once a causal model of a task has been learned, humans can use the model to 
 plan action sequences that maximize future reward (RL)  . We review 
 evidence that humans combine model-based and model-free learning algorithms 
 both competitively and cooperatively and that these interactions are  supervised 
 by metacognitive processes  . 

 i.  The sophistication of human-like reinforcement learning has yet to be 
 realized in AI systems, but this is an area where crosstalk between 
 cognitive and engineering approaches is especially promising. 

 Symbolic to Sub-symbolic Computations 
 Understand the perspective, understand where you stand, and understand the challenges 

 Symbolic Computations 
 Alan Turing suspected that it was easier to build and educate a child machine than to try to fully 
 capture adult human cognition (Turing 1950). 

 -  Turing pictured the child’s mind as a notebook with “  rather little mechanism and lots 
 of blank sheets,” and the mind of a child machine as filling in the notebook by 
 responding to rewards and punishments  , similar to  reinforcement learning. 

 -  It is a behavioral psychology perspective and also perspective of  empiricism of modern 
 connectionist  models–the idea that we can learn almost  everything we know from the 
 statistical patterns of sensory inputs  . 

 A similar sentiment was expressed by Minsky (1974): “I draw no boundary between a theory of 
 human thinking and a scheme for making an intelligent machine;  no purpose would be served 
 by separating these today since neither domain has theories good enough to explain  —or 
 to produce—enough mental capacity” 

 Much of this research assumed that human knowledge representation is symbolic and that 
 reasoning, language, planning and vision could be understood in terms of  symbolic 
 operations  . 

 Sub-symbolic Computations 
 Later perspective breaks the symbolic perspective further into sub-symbolic computations, that 
 thoughts about the nature of cognition is a  parallel  distributed processing (PDP)  where we 
 conduct parallel computation by combining simple units to collectively implement sophisticated 
 computations (NN is the demo of sub-symbolic computations). 



 Neural network models and the PDP approach offer a view of the mind and intelligence more 
 broadly that is sub-symbolic. The knowledge learned by these networks would be  distributed 
 across the collection of units rather than localized as in most symbolic data structures  . 

 -  The PDP perspective is compatible with “model building” in addition to “pattern 
 recognition.” 

 -  Very little assumption should be built into the networks. 
 -  Proponents of this approach maintain that many classic types of structured knowledge, 

 such as  graphs, grammars, rules, objects, structural  descriptions, and programs  , 
 can be useful yet  misleading metaphors for characterizing  thought  . 

 -  These  structures are more epiphenomenal than real  ,  emergent properties of 
 more fundamental sub-symbolic cognitive processes  . 

 More Than Distributed Is Needed 
 Concept learning + Generation + Prior + Higher level understanding +  CL flexibility 

 A different picture has emerged that highlights the importance of early  inductive biases  , 
 including core concepts such as number, space, agency, and objects, as well as powerful 
 learning algorithms that rely on  prior knowledge to  extract knowledge  from small amounts of 
 training data. This knowledge is often  richly organized  and theory-like in structure  , capable 
 of the  graded inferences  and productive capacities  characteristic of human thought. There may 
 be 2 benchmarks in assessing performance. 

 1.  Learning simple visual concepts (Supervised): 
 a.  Humans learn from  less examples but form a rich representation  . 
 b.  Humans  learn a concept  , that is a model of the class  that allows their acquired 

 knowledge to be flexibly applied in new ways,  generating  new examples  . 
 2.  Learning to play the Atari game & Frostbite game (RL Control): 

 a.  Too expensive learning -> Different learned representation between machines 
 and humans. Sparse feedback? 

 b.  Huma understand higher-level  cues  with small hints,  but DQN needs to have 
 sub-goals to actually learn, or it would be just trying random actions. 

 i.  DQN needs achievement of sub-goals and proceeding to next sub-goals. 
 c.  No flexibility to changes in game rules. People can learn models and use them 

 for arbitrary new tasks and goals. Although neural networks can learn multiple 
 mappings or tasks with the same set of stimuli (  adapting their outputs 
 depending on a specified goal  ) these models require substantial training or 
 reconfiguration to add new tasks (Continual Learning Problem). 

 i.  Once the environment has been established for AlphaGo or any RL, the 
 environment condition cannot be changed -> need to restart from scratch. 

 DQN does startes completely from scratch and humans have extensive prior experience before 
 they even starts ->  this may be important why we need  to have foundation models? No boost in 
 the flavor of large (almost too large set) of prior experiences  ? 



 Innate Intuitions For Grounding 
 Early in development, humans have a foundational understanding of several core domains. 

 -  number (numerical and set operations), 
 -  space (geometry and navi- gation), 
 -  physics (inanimate objects and mechanics), 
 -  psychology (agents and groups). 

 These c  ore domains cleave cognition at its conceptual  joints  , and each domain is 
 organized by a set of entities and abstract principles relating the entities to each other  . 
 The underlying cognitive representations can be understood as “intuitive theories,” with a causal 
 structure resembling a scientific theory. 

 Children seek out new data to distinguish between hypotheses, isolate variables, test causal 
 hypotheses, make use of the data-generating process in drawing conclusions, and learn 
 selectively from others. 

 Intuitive Physics For Generalization 
 At the age of 2 months, human infants expect inanimate objects to follow principles of 
 persistence, continuity, cohesion, solidity, and believe objects should move along smooth paths. 
 These expectations would guide later learnings. 

 People  reconstruct a perceptual scene  using  internal  representations  of the objects and 
 their physically relevant properties (such as mass, elasticity, and surface friction) and forces 
 acting on objects (such as gravity, friction, or collision impulses). 

 -  Relative to physical ground truth, the intuitive physical state representation is 
 approximate and probabilistic, and oversimplified and incomplete in many ways  . 
 Still, it is rich enough to support mental simulations that can predict how objects will 
 move in the immediate future, either on their own or in responses to forces we might 
 apply. 

 The  intuitive internal physics engine  approach enables  flexible adaptation to a wide range of 
 everyday scenarios and judgments in a way that goes beyond perceptual cues. 



 Instead of using a physics simulator,  could neural networks be trained to emulate a 
 general-purpose physics simulator, given the right type and quantity of training data?  However, 
 it is not sure if higher level would actually encode more generic physics properties instead of 
 just task-specific values. 

 What is actually learned? is  it just some specific things related to the task? Or is it a more 
 generic understanding of the world also captured ->  same performance results does not imply 
 same learning  . 

 Intuitive Psychology For Planning 
 At the very beginning, infants distinguish inanimate objects with animate objects to distinguish 
 who their parents are. Infants also  expect agents  to act contingently and reciprocally, to 
 have goals, and to take efficient actions toward those goals subject to constraints  (these 
 goals can be socially directed). at around 3 months of age, infants begin to discriminate 
 antisocial agents that hurt or hinder others from neutral agents, and they later distinguish 
 between anti-social, neutral, and pro-social agents. 

 -  Does this give the ability of higher level goal understanding? 
 -  Models formalize explicitly mentalistic concepts such as “goal,” “agent,” “planning,” 

 “cost,” “efficiency,” and “belief,” used to describe core psychological reasoning in infancy. 
 -  Bayesian inverse planning, or Bayesian theory of mind (ToM) 

 Planning computations may be formalized as solutions to MDP or POMDP, taking as  input 
 utility  and  belief functions  defined over an agent’s  state-space  and the agent’s  state-action 
 transition functions  , and returning a  series of actions  the agent should perform  to most 
 efficiently fulfill their goals (or maximize their utility). 

 -  By simulating these planning processes, people can predict what agents might do next, 
 or use  inverse reasoning  from observing a series of  actions to infer the utilities and 
 beliefs of agents in a scene. 

 -  Direct analogous  to how simulation engines can be  used for intuitive physics, to predict 
 what will happen next in a scene or to infer objects’ dynamical properties from how they 
 move. 



 -  simulation-based reasoning in intuitive psychology can be nested recursively to 
 understand social interactions.  We can think about  agents thinking about other 
 agents  . 

 Any full formal computational account of intuitive psychological reasoning needs to include 
 representations of agency, goals, efficiency, and reciprocal relations. 

 -  Let us  infer the beliefs, desires, and intentions  of the experienced player. 
 -  It is an early  emerging property  that helps us to  share with others cognitive ability  . 
 -  Behavior is explained as acting under such belief,  once inferred belief is established, no 

 need for actual experience to learn. 

 Learning As Rapid Model Expansion 
 Gradient-based methods can be seen as a “gradual adjustment of connection strengths” with a 
 large set of data. However,  infants can grasp the boundary of the infinite set that defines 
 each concept from the infinite set of all possible objects  (learning words) without a large set 
 of data.  There may be some key concepts that should 
 be considered more than just searching starting from 
 nowhere  . The three main objectives are all boosted by 
 each other, increasing performance of one would lead 
 to the increase of performance on the other and BPL is 
 a current model that somewhat does pretty well on all 
 three objectives. 

 Even with just a few examples, people can learn 
 remarkably rich conceptual models. One indicator of 
 richness is the variety of functions that these models 
 support. Beyond classification, concepts support 
 prediction, action, communication, imagination, 
 explanation, and composition. These abilities are not 
 independent; rather they hang together and interact, coming for free with the acquisition of the 
 underlying concept. 

 The ability of extending one learned concept or seeing the sub-components of one task to piece 
 it into a sub-component of a new task may be very relevant for continual learning and general 
 intelligence  . 

 This richness and flexibility suggest that  learning  as model building is a better metaphor 
 than learning as pattern recognition  . models are built  upon rich domain knowledge rather 
 than starting from a blank slate. 



 Bayesian Program Learning As Demo of Ideal Models 
 BPL represents concepts as simple stochastic 
 programs: a structured procedures that generate 
 new examples of a concept when executed. 
 These programs allow the model to  express 
 causal knowledge  about how the raw data are 
 formed, and the probabilistic semantics allow the 
 model to handle noise and  perform creative 
 tasks  . Structure sharing across concepts is 
 accomplished by the compositional re-use of 
 stochastic primitives that can combine in new 
 ways to create new concepts. 

 Note that we are overloading the word model to 
 refer to the BPL framework as a whole (which is a 
 generative model  ), as well as the individual 
 concepts (or  probabilistic models  ) that it infers  from images to represent novel handwritten 
 characters, there is a hierarchy of models: 

 1.  A higher-level generative program that generates different types of concepts. 
 2.  A lower-level probabilistic concept, which are themselves programs that can be run to 

 generate tokens of a concept. 

 Here, describing learning as rapid model building refers to the fact that BPL constructs 
 generative models that produce novel concepts, which generates probabilistic tokens of such 
 concepts. The below is a visual turing test, some data are generated by humans and some by 
 BPL. 

 Compositionality 
 Compositionality is the classic idea that  new representations  can be constructed through 
 the combination of primitive elements  . In computer  programming, primitive functions can be 



 combined to create new functions, and these new functions can be further combined to create 
 even more complex functions. This function hierarchy provides an efficient description of 
 higher-level functions, such as a hierarchy of parts for describing complex objects or scenes. 

 -  Parts can themselves be composed of sub-parts, forming a “partonomy” of part-whole 
 relationships. 

 -  The parts and relations can be shared and re-used from existing related concepts. 
 -  Because the parts and relations are themselves a product of previous learning, their 

 facilitation of the construction of new models is also an example of learning-to-learn. 

 Compositionality is also at the core of productivity:  an infinite number of representations can 
 be constructed from a finite set of primitives  , just  as the mind can think an infinite number of 
 thoughts, utter or understand an infinite number of sentences, or learn new concepts from a 
 seemingly infinite space of possibilities. 

 -  This solves the infinite space exploration problem? 
 -  object-oriented reinforcement learning & other RL methods for compositional learning. 

 Compositionality is also central to the construction of other types of symbolic concepts beyond 
 characters, where new spoken words can be created through a novel combination of phonemes 
 or a new gesture or dance move can be created through a combina- tion of more primitive body 
 movements. 

 Casuality 
 Causal models represent hypothetical real-world processes that produce the perceptual 
 observations  . Causality has been influential in theories  of perception. “Analysis-by-synthesis” 
 theories of perception maintain that sensory data can be more richly represented by modeling 
 the process that generated it. Relating data to their causal source provides strong priors for 
 perception and learning, as well as a richer basis for generalizing in new ways and to new tasks. 

 In control and reinforcement learning, causal models represent the  structure of the 
 environment  , such as modeling state-to-state transitions  or action/state-to-state transitions 
 (somewhat model-based ideas). 

 -  Although a generative model describes a process for generating data, or at least assigns 
 a probability distribution over possible data points, this generative process may not 
 resemble how the data are produced in the real world. 

 -  Causality refers to the  subclass of generative models  that resemble, at an abstract 
 level, how the data are actually generated  . 

 -  Deep Belief Networks & VAE are on one spectrum of GAN while BPL is on the other 
 because BPL resembles more to the actual hand-written process. 

 -  For the BPL of learning handwritten characters, causality is operationalized by 
 treating concepts as motor programs, or abstract causal descriptions of how to 
 produce examples of the concept, rather than concrete configurations of specific 
 muscles. 



 Learning-to-Learn 
 When humans or machines make inferences that go far beyond the data, strong prior 
 knowledge (or inductive biases or constraints) must be making up the difference  . One 
 way people acquire this prior knowledge is through “  learning-to-learn  ”, a term introduced by 
 Harlow (1949) and closely related to the machine learning notions of “  transfer learning  ”, 
 “  multitask learning  ”, and “  representation learning  ”.  These terms refer to ways that learning a 
 new task or a new concept can be accelerated through previous or parallel learning of other 
 related tasks or other related concepts. 

 The strong priors, constraints, or inductive bias needed to learn a particular task quickly are 
 often  shared to some extent with other related tasks  .  A range of mechanisms have been 
 developed to adapt the learner’s inductive bias as they learn specific tasks and then apply these 
 inductive biases to new tasks. 

 -  BPL transfers readily to new concepts because it learns about object parts, sub-parts, 
 and relations, capturing learning about what each concept is like and what concepts are 
 like in general. 

 -  It is crucial that learning-to-learn occurs at multiple levels of the hierarchical generative 
 process.  Previously learned primitive actions and  larger generative pieces can be 
 re-used and re-combined to define new generative models for new characters  . 
 Further transfer occurs by learning about the typical levels of variability within a typical 
 generative model. This provides knowledge about how far and in what ways to 
 generalize when we have seen only one example of a new character, which on its own 
 could not possibly carry any information about variance. 

 -  Deep reinforcement learning systems for playing Atari games have had some impressive 
 successes in transfer learning. For example, the “actor-mimic” algorithm that first learns 
 13 Atari games by watching an expert network play and trying to  mimic the expert 
 network action selection  and/or internal states. 

 Thinking Fast 
 The  combination of rich models with efficient inference  suggests another way psychology 
 and neuroscience may usefully inform AI. It also suggests an additional way to build on the 
 successes of deep learning, where  efficient inference  and scalable learning  are important 
 strengths of the approach.  There needs to be a way  to resolve the conflict between fast 
 inference and structured representations, a collaboration. 

 Approximate Inference From Structured Models: AlphaGo 
 Computing a probability distribution over an entire space of programs is usually intractable, and 
 often  even finding a single high-probability program  poses an intractable search problem  . 
 In contrast, gradient-based learning is very fast even in a vast space.  A complete account of 
 learning and inference must explain how the brain does so much with limited 
 computational resources  . 



 Looking at pure probabilistic inference, popular algorithms for approximate inference in 
 probabilistic machine learning have been proposed as  psychological models  . Most 
 prominently, it has been proposed that humans can approximate Bayesian inference using 
 Monte Carlo methods  (stochastically sample the space  of possible hypotheses and evaluate 
 these samples according to their consistency with the data and prior knowledge). We are 
 beginning to understand how such methods could be implemented in neural circuits. 

 -  Although Monte Carlo methods are powerful and come with asymptotic guarantees, it is 
 challenging to make them work on complex problems like program induction and theory 
 learning,  and it is unlikely that they are the only  mechanism we use to process  . 

 -  When the hypothesis space is vast and only a few hypotheses are consistent with the 
 data, how can good models be discovered without exhaustive search (the full 
 combinatorial complexity)? 

 -  Humans use  high-level abstract features of a domain  to  guide hypothesis selection  , 
 by reasoning about distributional properties, dynamical properties, or monotonic 
 relationships between causes and effects. Is there some guidance like that for the 
 machines? 

 How might efficient mappings from questions to a plausible subset of answers be 
 learned  and making inference a smaller problem to  tackle? 

 -  One approach is to amortize probabilistic inference computations into an efficient 
 feed-forward mapping (gradually lower the computation cost), somewhat a  learning to 
 do inference  (independent from the ideas of learning  as model building). 

 -  These feed-forward mappings can be learned in various ways, for example, using paired 
 generative/recognition networks and variational optimization, or nearest-neighbor density 
 estimation. 

 This trend is an avenue of potential i  ntegration of deep learning models with probabilistic 
 models and probabilistic programming  : training neural networks to help perform probabilistic 
 inference in a generative model or a probabilistic program. Another avenue for potential 
 integration is through  differentiable programming  , by ensuring that the program-like 
 hypotheses are differentiable and thus learnable via gradient descent. 

 -  Neural networks with “working memories” that augment the shorter-term memory 
 provided by unit activation and the longer-term memory provided by the connection 
 weights. 

 -  These developments are also part of a broader trend toward “differentiable 
 programming,” the incorporation of classic data structures, such as random access 
 memory, stacks, and queues, into gradient-based learning systems such as Neural 
 Turing Machine (NTM) and Differentiable Neural Computer (DNC). 

 Gradual Model-free to Model-based 
 Model-based planning is an essential ingredient of human intelligence,  enabling flexible 
 adaptation to new tasks and goals  ; it is where all  of the rich model-building abilities discussed 
 in the previous sections earn their value as guides to action. 



 Once the learned skills become “  habitized  ”, a shift from model-based to model-free control can 
 happen. This shift may arise from a rational arbitration between learning systems to  balance 
 the trade-off between flexibility and speed  . 

 -  plans can be amortized into cached values by allowing the model-based system to 
 simulate training data for the model-free system (Sutton 1990). This process might occur 
 offline (e.g., in dreaming or quiet wakefulness), suggesting  a form of consolidation in 
 reinforcement learning  . 

 -  Consistent with the idea of cooperation between learning systems in the human brain, a 
 recent experiment demonstrated that model-based behavior becomes automatic over 
 the course of training. Thus,  a marriage of flexibility and efficiency might be 
 achievable if we use the human reinforcement learning systems as guidance  . 

 Example: AlphaGo 
 This is AlphaGo, a really smart system, but it is not robust to the face of variants of the game 
 Go.  Does there exist a way in which we can reuse some of the trees that have been explored, to 
 find some robust representation of the game Go that can be carried over even in new variants of 
 the game Go to explore more parts of the new tree. 

 Humans understand these variants and adapt to them because they  explicitly represent Go as 
 a game  , with a goal to beat an adversary who is playing to achieve the same goal he or she is, 
 governed by rules about how stones can be placed on a board and how board positions are 



 scored.  Humans represent their strategies as a response to these constraints, such that if 
 the game changes, they can begin to adjust their strategies accordingly  . 

 -  Is it a further constraint solving problem with different constraints? 

 Go presents compelling challenges for AI beyond matching world-class human performance, in 
 trying to  match human levels of understanding and generalization, based on the same 
 kinds and amounts of data, explicit instructions, and opportunities for social learning 
 afforded to people  . In learning to play Go as quickly and as flexibly as they do, people are 
 drawing on most of the cognitive ingredients this article has laid out. They are learning-to-learn 
 with compositional knowledge. They are using their core intuitive psychology and aspects of 
 their intuitive physics (spatial and object representations). And like AlphaGo, they are also 
 integrating model-free pattern recognition with model-based search. 


