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1 Introduction

In nature, there may exist common characteristics
in information processing and decision making that
are exhibited by different types of systems. It has
long been proposed that reinforcement learning
algorithms and the neural mechanism of human
decision making are highly alike (Niv (2009)) and
many previous studies (Mollick and Kober , 2020)
have used these algorithms as a computational tools
to reason about human addictive behaviors. In this
study, we extend previous works that uses a mod-
ified TD learning algorithm for modeling the ef-
fects of drug addiction through dopamine surge
and add in action selection ability into the agent.
We try to model the effects of a monotonic de-
creasing dopamine surge function on an Q-agent’s
ability to make decision under a discrete chain
multi-addiction states setting. Specifically, we built
different search strategies into the Q-agent (some
resembles more to human reasoning logic than oth-
ers) and created a discrete chain environment to
model decision making purely under addiction and
also when there exist higher natural rewards in the
environment.

2 Methods

Traditionally in the study of addiction through the
perspective of reinforcement learning algorithms,
one approach is to study the value-iteration process
(Redish (2004)), specifically Temporal Difference
Reinforcement Learning (TDRL) because of its re-
semblance to dopamine functionality in the human
decision making circuit. In the human reinforcing
circuitry, the striatum area of basal ganglia incorpo-
rates environmental state (sensory motor informa-
tion) from the cortex with dopamine reward predic-
tion error signal from the ventral tagmental area to
adjusts the weights on action selection back to the
cortex, influencing movements, decision making,
and further reward processing. This is very alike in

how TDRL update its understanding of the values
of the environment.

δ = R(si) + γV π(si+1)− V π(si) (1)

V π(si)← V π(si) + ηδ (2)

si is current state, V π(si) and V π(si+1) is the
value of the current and next state under the current
policy π, R(si) is the scalar reward feedback of
the current state, and γ and η would be the dis-
counting and learning rate accordingly. At each
time stamp, an reward prediction error (RPE) is
produced by taking the discounted difference of
current understanding of the trajectory (value from
si and onward) and true reward plus the future un-
derstanding of the trajectory (real value plus the
value from si+1 and onward). Such RPE have been
thought to serve the role that dopamine serves in the
human brain during decision making, to not serve
as a pleasure signal, but rather a internal signal in-
dicative of the discrepancy between expectations
and observations. In this study, we extend such al-
gorithm beyond TDRL to Q-learning, an agent that
is actually capable of making decision and move
around in the environment.

2.1 Addicted Q-learning Agent

In normal Q-learning, the algorithm uses the value
of the action Q(si, ai) directly instead of the value
of the state like in TDRL for a mathematical reason
(Sutton and Barto , 2018).

δ = R(si) + γ max
a∈Ai+1

Q(si+1, ai+1)−Q(si, ai)

(3)
Q(si, ai)← Q(si, ai) + αδ (4)

The structure of the update preserves, the only dif-
ference being that we are using the max operator to
compare the current understanding of the trajectory
against the best trajectory that we can think of so
far (real reward R(si) plus the best Q-value from
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next state maxa∈Ai+1 Q(si+1, ai+1)) to guarantee
convergence. Furthermore, we modified the error
signal δ to incorporate the effect of drugs (abun-
dant dopamine surge) by taking the max operator
again on the error of error plus surge and just surge
(Redish (2004)).

δaddicted = max(δ +D(t), D(t)) (5)

The D(t) dopamine surge term is a monotonic de-
creasing function that can be changed for different
study purposes. For showing a fast diminishing
effect of dopamine surge caused by drug uses, all
experiments in this study uses a exponential de-
crease function of D(t) = D(t0)d

t where t is the
number of trails and d is the decay constant. see
the full update expression in Appendix equation 1.

2.2 Discrete Chain and Rewards

Environment is an major component of reinforce-
ment learning as the structure and reward feedback
for the environment dictates what the agent can
learn. In this study we have adapted similar design
as Redish 2004 with a discrete chain-like environ-
ment. Particularly, we design the action space of
the agent to be only a ∈ (forward, backward, stay).
Such environmental setting also made it easier fro
us to compare the action of the agent with an pure
stochastic modeling as the environment is essen-
tially a discrete Markov Chain. For all experiments
conducted in this study, we have used a chain length
of 10. Since we are interested in the effect of multi-
addiction state’s effect on the agent’s action selec-
tion, we have built in two drug rewards at s0 and
state s9. We have also built in a natural reward at
s5 that has doubling the reward of the drug state
to model whether the Q-learning agent is able to
gain such understanding of the environment under
the effect of addiction, this feature would be used
for some of the studies of this paper, which would
be stated in the according section. For details, see
Appendix figure 1.

2.3 Various Search Strategies

The Q-learning process using the modified error
essentially points a direction of the agent to follow
already, by taking steps to maximize Q-values at
every time stamp, we can formulate the most naive
way of doing action selection: select the action with
the maximized Q-value at every step, this is also
known as the Greedy algorithm. However, since
the setting of the environment doesn’t just have a

single reward state, it may be too biased to always
choose the best Q-value as the better trajectories
may just have not been discovered yet. An clas-
sic approach to this problem would be the Epsilon
Greedy policy, where at every step, a random value
is generated between 0 and 1 informally and if it is
beneath certain ϵ threshold, then the agent selects
a random action to explore the environment. For
our study we choose ϵ = 0.1, meaning that there
would be 10 percent of the time where the agent
is exploring the environment. Since the setup of
our environment is quite simple, we believe that
such low threshold would be sufficient. Lastly,
we have also built in the Boltzmann Exploration
strategy, where it select actions according to a prob-
ability distribution estimated by the Q-values and
actions with higher estimated values are chosen
more frequently, but also giving a chance for the
lower valued actions to be chosen. The probability
distribution comes from taking the exponential and
then normalizing the Q-value of one action against
all other actions at this state (Sutton and Barto ,
2018).

P (a|s) = exp(Q(s, a)/τ)∑
b∈A exp(Q(s, b)/τ)

= π(a, s) (6)

This strategy have been deemed to be a more
human-like strategy because it is developing not
only the Q understanding of an action but also
understanding of the relationship between action
through a probabilistic paradigm, forming a much
robust interpretation of the space. Empirical test-
ing results from our study have also shown that
this strategy does perform the best under addicted
conditions.

2.4 Procedure
We have conducted multiple experiments to eval-
uate the performance of the Q-agent under an ad-
dicted state. We have established some base pa-
rameters that we use for all our experiments. For
particular experiments, some parameter may be
changed and it would be stated in the according
sections.

We first examined (1) under addicted state and
addicted state with the presents of doubling nat-
ural reward, how well does Epsilon Greedy and
Boltzmann Exploration strategy perform and deliv-
ers the results through a heat map representation
of Q-value for different state across different trials,
attempting to demonstrate the learning process. We
then (2) turned addiction effect off (no dopamine
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Parameter Value
alpha 0.1
gamma 0.9
epsilon 0.1
num_trials 100
num_states 10
num_actions 3
initial_dopamine_surge 1
dopamine_decay_rate 0.99
reward_states [0, 9]
drug_reward 1
addicted True
exploration_strategy epsilon_greedy
if_natural False
natural_reward_states [5]
natural_reward_boost 2

Table 1: Base Configuration Settings

surge addition to the error) and examines the perfor-
mance of the two strategy through the comparison
of average RPE. At last, we (3) built a discrete
stochastic model (random walk) and compare the
expected visit time of the agent using the two strate-
gies with such random model.

3 Results

We have trained two agents with two different
search strategies (Epsilon Greedy and Boltzmann
Exploration, in here we would refer them as Ae and
Ab) under two conditions (addicted and addicted
with doubling reward presented) to demonstrate the
effect of addiction on the agent.

3.1 Heat Map Representation of Learning

From using a heat map to represent Q-value
changes through out learning, the result have indi-
cated that (1), under pure addicted condition, both
agents learn about the drug rewards states and ex-
hibits similar learning effect highlighted previously
by Redish 2004 where, as trials increases, the na-
ture of the algorithm propagates the reward from
the drug states back/forward to previous/next states.
Shown in both forward move graphs propagating
back from s9 and in the backward move graphs
propagating from s0 forward. Moreover, (2) un-
der the setting where natural reward (double drug
reward values) is presented in the environment at
s5, Ae seems to fail to acknowledge such higher re-
ward and still choose to go back to s0 or s9 for the
lower drug rewards. On the other hand, Ab seems

to built a more robust understanding of the environ-
ment and constantly choose to go forward from s4
to s5, from s6 back to s5 or constantly staying at
s5. It is also worth pointing out that, throughout
the experimentation, (3) Ae’s performance is not
steady and does not always come to similar action
selection while Ab is much more robust with its
action selections. For details of the heat map, see
Appendix figure 2.

3.2 Average RPE Comparison

RPE have been studied a lot as it indicates an
key component of learning: what is unexpected
and what direction should the update be going to-
wards. Inherently, comparing the RPE for different
strategies under addicted and non-addicted state be-
comes a interesting question. From our result, we
have shown that (1) while Greedy strategy exploits
maximally and build the most steady representa-
tion of the environment, Ab overall-wise perform
much steadier and build its representation of the
environment much better than Ae. It is also note
worthy that, though the Greedy strategy builds a
stable representation, such representation may be
incorrect due to the lack of exploration when the
environment setting gets much more complicated
and reward states gets much more sparse. In addi-
tion, we have shown that for all strategies, (2) the
RPE has a concave shape where the error gradu-
ally raises in the beginning and drops gradually as
the agent explores the environment more. At last,
the comparison between addicted and non-addicted
agent have shown that (3) the non-addicted agents
are generally more nosier in RPE comparing to
the addicted agents, signifying the effect of the
dopamine surge really grabbing all the "attention"
of the agents. For details of the RPE curve, see
Appendix figure 3.

3.3 Expected Visits Comparison

Since the setting of the environment allows the
agent to make actions, it would be inappropriate
to set a baseline random model just by using plain
probability as the location of the previous state dic-
tates where the next state could be at. Hence, we
have established a simple random walk model with
probability of forward and backward jump both
being p(si) = 0.5 to establish a baseline of how
the agent would perform under a purely stochastic
condition. Furthermore, it is common in discrete
stochastic processes reasoning to discuss about the
expected or the empirical average number of visits
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to each state to reason about some global charac-
teristic of the chain (environment). This part of
the study is conducted under the setting where a
doubling natural reward is presented. The random
walk was performed over 100 trials with each trail
stepping the environment 1000 environmental step.
From the random walk expected visits graph, it
can be seen that under a pure stochastic movement
through the environment, (1) the states on the edge
(s0 and s9) are actually less likely to be visited
compare to those in the middle, illustrating the
power of rewarded drug states pulling the agent
towards the edge. The expected visit graph of the
two Q-learning agents are generated using trained
Q-value tables with the base setting in Table 1 then
re-simulated the actions 10000 trials with max of
100 actions per trails. The max action here is a
designed choice because (2) the agent would sim-
ply be stuck at the addiction states going back and
forward or choosing the staying action constantly
to reach to the drug states, never terminating the
trail. Again, similar results are shown here with the
results demonstrated in the heat map result where
(3) Ab finds much more robust representation of the
environment and finds the true high natural reward
while the Ae gets stuck in one of the addiction state.
Appendix figure 4.

4 Discussion

The results from this study delivers an new perspec-
tive of looking at the addictive decision making
through computational tools. Though no neural
network or more modern deep learning methodol-
ogy is used in this study, we still can reason with
the innate mathematical properties and character-
istics behind these algorithms and try to find the
aspects that resembles human behavior. Again, we
have demonstrated in this study that, (1) rewards
tends to propagate backward or forward to different
states from the drug state, which is consistent with
Redish’s finding using single drug state (see see
Heat Map Representation of Learning). (2) Boltz-
mann Exploration strategy tends to find much more
robust representation of the true environment in
both addicted and addicted plus natural reward con-
ditions when comparing to Epsilon Greedy strategy,
high lightening the importance of probabilistic rea-
soning in decision making (see Heat Map Represen-
tation of Learning, Average RPE Comparison, and
Expected Visits Comparison). We have (3) also
demonstrated the power of addiction (dopamine

surge), trapping the agent and misleading the agent
to build a robust interpretation of environment that
gets all the attention on the drug states (see Average
RPE Comparison).

However, this study only points out the computa-
tion and theoretical aspect of using such strategy to
study decision making, no behavioral or neuronal
counter parts study was conducted to match the
behavior of the algorithm in real organism. More
studies need to be conducted on the biological ex-
perimentation side to proof the validity of the ideas
delivered by the algorithms in this study or to find
new addictive behaviors from observations men-
tioned in this study. In addition, this study only
touches on some of the most fundamental search
strategies in a discrete reinforcement learning set-
ting. More studies can be conducted to explore and
incorporate more algorithms, perhaps even moving
to continuous policy optimization realms involving
Actor-critic algorithms (Sutton and Barto , 2018)
and more.
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Appendix With Figures

A Environment Chain Setup

The code base for doing simulations for this study is located in this GitHub repository.

Figure 1: Discrete multi-addiction state chain environment’s graphical illustration.

B Full Update Rule

Full update of Q-value expression of addicted Q-agent:

Q(si, ai)← Q(si, ai)+α

(
max

2

((
R(si) + γ max

a∈Ai+1

Q(si+1, ai+1)−Q(si, ai)

)
+D(t0)d

t, D(t0)d
t

))
The key terms are described in the following list:

• R(si): True reward of state si

• Q(si, ai): Action-value function for taking action ai in state si.

• α: Learning rate, determining how much new information overrides old information.

• γ: Discounting factor, determines how important later rewards are

• R(si) + γmaxa∈Ai+1 Q(si+1, ai+1) − Q(si, ai): Temporal difference error term, where R(si) is
the reward.

• maxa∈Ai+1 Q(si+1, ai+1): Maximum future value given the current understanding at the next state
si+1.

• D(t0)d
t: Dopamine surge monotonic decreasing function.
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C Analysis Figures

Figure 2: Heat map representation of Q-value in different search strategies and reward states across different trails
when natural reward is presented or not.

Figure 3: Average RPE for different search strategy Q-agent under an addiction or non-addiction condition (presents
of dopamine surge or not).
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Figure 4: Expected visits of trained Q-agents and random walk stochastic processes when natural reward is
presented.
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