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Abstract
Building on theories by Glenberg & Robertson
(2000), which posited that language compre-
hension is partly rooted in embodied experi-
ence, and subsequent findings by Jones et al.
(2022) that Large Language Models (LLMs)
can partially grasp object affordances without
direct worldly experience, our study extends
these inquiries to the capabilities of Multimodal
Large Language Models (MLLMs) to discern
object affordances. We present state-of-the-art
MLLMs with 36 scenarios (18 scenarios with
1 from each synthetic and natural dataset that
we created) adapted from previous work fea-
turing Afforded, Non-Afforded, and Canonical
objects, and examine whether MLLMs assign
higher probabilities to images which represent
objects that are afforded or not in the context
of their associated scenario. Results indicate
that GPT-4 Vision can effectively differentiate
between objects that are contextually appro-
priate for a given task and those that are not,
suggesting an emergent ability to understand
the world’s affordances. Conversely, Image-
Bind displays a limited response to these dis-
tinctions, showing reduced sensitivity in rec-
ognizing affordances, particularly within the
dataset reflecting real-world imagery and only
marginal sensitivity in the dataset composed of
artificially generated images. This suggests
that even without any physical experiences,
MLLMs can acquire implicit knowledge about
the world. However, this capability is not inher-
ent to all models, underscoring that the mere
integration of multimodal data does not univer-
sally afford models more advanced cognitive
abilities.

1 Introduction

Advancements in computational technology and
the diversity of available datasets have led to sub-
stantial improvements in Large Language Mod-
els (LLMs) and Computer Vision Models (CVMs),
leading to the emergence of Multimodal Large Lan-
guage Models (MLLMs) that integrate together

both textual and visual data to improve understand-
ing and interaction capabilities (Dosovitiskiy et al,
2021). Despite these advances, significant gaps re-
main in our understanding of how MLLMs synthe-
size and interpret this integrated data, particularly
in relation to human-like language comprehension
and real-world interaction. The “black box” na-
ture of these models further complicates efforts to
evaluate their reliability and interpretability. While
MLLMs can process textual and visual data, the
internal mechanisms by which they arrive at con-
clusions remain largely inaccessible. This echoes
cognitive linguists’ concerns about symbol ground-
ing issues—how abstract computational entities re-
late to tangible, real-world entities and experiences
(Harnad, 1990).

Embodied simulation, the theory that language
comprehension in humans is rooted in physical ex-
periences, offers a framework for evaluating AI’s
potential to navigate and understand the world
more intuitively. This theory suggests that hu-
man language comprehension is profoundly tied to
physical experience(Bergen, 2015; Feldman and
Narayanan,2003), and that reactivation of senso-
rimotor experiences is essential for resolving the
symbol grounding issue. Empirical support for
this theory is evident in phenomena such as the
“match effect”, where comprehension in humans
is enhanced when sensory experiences align with
linguistic inputs (Stanfield & Zwann, 2001; Pecher
et al., 2009; Connell, 2007).

A potential implication of embodied simulation
theories is that LLMs–which lack embodied ex-
perience–will be unable to model some aspects of
human language comprehension. Some researchers
have tested this empirically by asking whether
LLMs are sensitive to distinctions that humans
are thought to rely on simulation of embodied ex-
perience. Glenberg and Robertson (2000) found
that while distributional models like Latent Seman-
tic Analysis (LSA) are adept at capturing certain
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linguistic patterns, they are not sensitive to affor-
dances — the set of actions an agent can take with
objects in a given environment — in the same way
humans are. (Gibson, 2014). Humans, drawing
from their lived experiences, instinctively under-
stand that a chair affords sitting for human-like
bodies but not for elephants. This human sensitiv-
ity to affordances, which distributional models fail
to replicate, raises a question: Is the inability of
models like LSA to grasp such concepts due to the
inherent limitations of using only distributional lan-
guage statistics without connection to perceptual
or actionable experiences?

Jones et al. (2022) revisit this question using
contemporary LLMs like GPT-3 and replicating
experiments that examine their sensitivity to the
affordance of actions. Their findings show that
while models do show sensitivity to afforded vs
non-afforded items and are able to capture a third
of the effect seen in human judgment, they still do
not fully incorporate the nuanced understanding
of physical interactions. As they still do not ade-
quately account for affordances in comparison to
humans, there remains the question of whether this
gap in performance is due to the lack of physical
interaction experience or the inherent nature of how
these models are trained primarily on textual data
(Bisk et al. 2020).

The present work explores whether models that
integrate both textual and visual data can surpass
the limitations of purely text-based systems by syn-
thesizing information across modalities to under-
stand object affordances and contextual interac-
tions more deeply. By leveraging the strengths of
both visual and textual data, these artificial systems
might offer new pathways to address the symbol
grounding problem, embodied cognition, and ap-
proach closer to human-like understanding and rea-
soning in real-world scenarios. Furthermore, by
examining their performance in contextually rich,
multimodal scenarios, we seek to enhance our un-
derstanding of AI’s interpretability and reliability.

2 Study 1

Study 1 investigates the responsiveness of MLLMs
to the concept of affordances, aiming to evaluate
their linguistic comprehension and the extent to
which they can apply knowledge beyond their train-
ing datasets.

The primary research question is whether
MLLMs assign higher probability to images repre-

Figure 1: Example of natural datapoint.

Figure 2: Example of synthetic datapoint.

senting objects for which a linguistically described
action is possible (Afforded), compared to actions
that are not possible (Non-Afforded). To address
this, we compare the probability assigned to Af-
forded images against Non-Afforded images across
18 different scenarios drawn from Glenberg &
Robertson (2000), each associated with two im-
age stimuli: Afforded and Non-Afforded. We also
conduct a manipulation check, comparing the prob-
ability assigned to Canonical images against Non-
Afforded images, to assess the MLLM’s sensitivity
to canonical affordances of objects.

3 Methods

3.1 Dataset

We adapted the scenarios from Jones et al. (2022),
where they presented text to LLMs describing 18
scenarios each with three different types of objects
for each scenario (Afforded, Non-Afforded, Canon-
ical) and created a new dataset with 3 images for
each scenario using both synthetic & natural data
collection methods.

Here is an example data point, along with the
set of possible images presented to the model:
Scenario: “After wading barefoot in the lake, Erik
needed something to get dry. What would he use?”
Objects: Canonical Object: [towel], Afforded
Object: [shirt], Non-Afforded Object: [glasses]

Natural images

Synthetic images with DALL-E
For our experiment with MLLMs, we developed

custom datasets based on 18 distinct scenarios.
Each scenario includes two images for every ob-
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Figure 3: Softmax Result for 6 models’ performance on
distinguishing the natural & synthetic dataset created.

ject–one generated synthetically using OpenAI’s
diffusion model DALL-E (https://openai.com/dall-
e) and the other sources manually from the internet.
Synthetic images might present more simplified
versions of objects, while real-world images pro-
vide more complex visual cues. By incorporating
both a synthetic image set and natural image set
we can evaluate the MLLM’s ability to general-
ize across a broader spectrum of visual representa-
tions The DALL-E images were generated with the
prompt “realistic object with white background”
to ensure greater uniformity across the generated
images, making up our synthetic dataset. Our nat-
ural dataset was handpicked using Google image
search for <term>, and we chose the first image
which matched closest with our specifications: the
object image must have a white background, be
positioned in its most natural angle, and have no
odd discoloration.

To ensure that the images were representative
of the objects they were intended to depict, we
conducted a normalization study using 6 differ-
ent MLLMs (CLIP ViT-B-32, CLIP ViT-L-14-336,
CLIP ViT-L-14, CLIP ViT-H-14, CLIP ViT-G-14,
CLIP ViT-bigG-14) (Radford et al., 2021). This
process involved presenting the models with 3 sets
of images, each representing a Canonical object,
an Afforded object, or a Non-Afforded object (for
example, an image of a towel, glasses, and a shirt),
paired with their corresponding labels (’towel,’
’glasses,’ ’shirt’). We calculated the cosine dis-
tance between each text label and its respective
image to assess their similarity. Subsequently, we
determined the probability for each image-text pair
by computing the dot product of the vector space
distances and applying a Softmax function. This
analysis confirmed that the model’s performance on
matching word-image pairs met our expectations.

3.2 Model

Our model of interest for this study trained by Meta
AI, ImageBind (Girdhar et al., 2023), is among the

most powerful models at the time of this study.
ImageBind is an MLLM which learns a joint em-
bedding across six modalities from images, text,
audio, depth, thermal to IMU data using Trans-
former architecture.

3.3 Procedure
For each of the 18 scenarios from each dataset,
two different prompt types were tested: one with
an explicit question (i.e. "Brad was sitting in
his office when an intruder threatened him with
a knife. Which object did Brad use to defend
himself?") and another with a reference to an
implicit ’this’ statement (i.e. "Brad was sitting in
his office when an intruder threatened him with
a knife. Brad used this to defend himself."). By
using both an explicit and an implicit prompt, we
can evaluate how the framing of the question may
potentially influence the MLLM’s interpretation
and response accuracy. Explicit prompts may
guide the model more towards a targeted answer,
while implicit prompts have the model infer and
extract deeper levels of understanding on its own.
Only the Afforded and Non-Afforded images were
presented to the model for the primary research
question. The Canonical image was used in the
follow up manipulation check. After presentation
of each prompt, we extracted the cosine distance
between the model’s representation of the scenario
description and each image. This distance mea-
sures the similarity between the textual scenario
and the visual representation of each object,
where smaller distances indicate greater similarity.
Probabilities were then calculated by soft-maxing
the cosine distance between each image and the
scenario description. This allows for quantitative
assessment of MLLM’s ability to comprehend
affordances.

We have pre-registered our experiment on
OSF https://osf.io/86aer.

3.4 Results
For the synthetic dataset Afforded condition, we
reject the null hypothesis [t=2.14, p<0.05] where
the probability assigned to Afforded images is sig-
nificantly higher than that assigned to the Non-
afforded image. But for the natural dataset, we fail
to reject the null hypothesis [t=-1.39. p>0.05].

For both manipulation checks, however, the
MLLM demonstrated sensitivity to the difference
between Canonical and Non-Afforded images (syn-
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Figure 4: SoftMax result for ImageBind with 2 dataset
(natural, synthetic) and 3 relationships (Afforded, Non-
afforded, & Canonical)

thetic Canonical condition [t=2.38, p<0.05] and
natural Canonical condition [t=2.12, p<0.05]).

3.5 Discussion

From our results, we conclude that ImageBind
demonstrates some ability of understanding affor-
dance relationships in the synthetic dataset but not
in the artificial dataset if not a reverse effect. In
the synthetic dataset, ImageBind appears to have
a grasp of affordances, as indicated by the statisti-
cally significant difference in the model’s ratings
for Afforded versus Non-Afforded objects (t=2.14,
p<0.05). This suggests that when presented with
images that were created in accordance with an
artificial system’s understanding of the object, Im-
ageBind can apply learned patterns to hypothesize
about potential uses for the object. However, the
same does not hold in the natural dataset, where the
model was not able to consistently differentiate be-
tween Afforded and Non-Afforded images, failing
to reject the null hypothesis here (t=-1.39, p>0.05).
It’s possible that differences in the datasets them-
selves contributed to the results. As models like Im-
ageBind are usually exposed to more natural than
synthetic-like images during training, the model
may have greater sensitivity to subtle variations
in natural scenarios that are not as pronounced in
synthetic representations. Thus, the variance in
model performance across datasets also reflects the
varying exposure of the model to more commonly
encountered image types during its training phase.

Furthermore, ImageBind demonstrates a clear
sensitivity to canonical affordances across both
datasets, reliably distinguishing between Canon-
ical and Non-Afforded images (synthetic Canoni-
cal condition [t=2.38, p<0.05] and natural Canoni-
cal condition [t=2.12, p<0.05]). This consistency
across both types of data highlights the model’s
ability to anchor its understanding in commonly
accepted object functions and uses, regardless of
whether the representation is synthetic or natural.

So while MLLMs like ImageBind can identify typ-
ical object uses, their capacity to understand less
conventional affordances appears to be limited by
the nature of their training data and the contexts
they have been exposed to. This could reflect a gap
in current MLLM training that could be bridged
in the future by incorporating more diverse and
context-rich experiences, more closely imitating
“lived experiences” that humans have.

4 Study 2

Our second, follow-up study, delves into the ability
of GPT-4 Vision (GPT-4V) to discern and prioritize
object affordances in a multimodal context. Sim-
ilar to ImageBind, the primary focus is to inves-
tigate whether GPT-4V can differentiate between
afforded and non-afforded objects, based on sce-
narios accompanied by images.

4.1 Methods

4.1.1 Dataset
Study 2 uses the same dataset as the customized
dataset we used in Study 1 (18 scenarios for the
natural dataset and 18 scenarios for the synthetic
dataset, with three images for each scenario).

4.1.2 Model
GPT-4 consistently outperforms existing LLMs on
traditional ML benchmarks. It scores 40% higher
than GPT-3.5 on internal evaluations, and GPT-
4V augments GPT-4’s capabilities by processing
images alongside text https://openai.com/index/gpt-
4v-system-card/. At the time when Study 2
was conducted, GPT-4V was the state-of-the-art
MLLM.

4.1.3 Procedure
Since we do not have access to GPT-4V’s internal
embeddings at the time of this study, this test was
conducted through interacting with GPT-4V’s API.
To obtain a “sensibility ranking” for the use of each
object in the images within the context of the 18
scenarios, we issued prompts to the system that
were preceded by a specific instruction designed to
elicit this ranking:

“In this task, you will read short passages and look
at an image of an object. Please rate how sensible
it would be to take the action described in the last
sentence using the object in the image in the context
of the whole passage. The scale goes from 1 (virtual
nonsense) to 7 (completely sensible). Be sure to
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Figure 5: Rating results using GPT-4V with 2 dataset
(Natural, Synthetic) and 3 relationships (Afforded, Non-
Afforded, Canonical.)

read the sentences carefully. Please respond only
with a number between 1 and 7.”

We used the elicited ratings as a reflection of the
model’s judgment on how appropriate an object is
for the described action. Additionally, to ensure de-
terministic answers, GPT-4V’s system temperature
is set to 0.

4.2 Results

For both our comparisons, we constructed a lin-
ear mixed-effects model. Between Afforded vs
Non-Afforded Objects, our model analysis showed
that Afforded objects were given higher sensibil-
ity rankings compared to Non-Afforded objects.
From analysis, we see that (Afforded: M=2.10,
SD=1.52, Non-Afforded: M=1.02, SD=0.19, p <
0.001). This suggests that GPT-4V is capable of dis-
tinguishing between objects that are appropriate for
a given action and those that are not. Further anal-
ysis includes comparing sensibility rankings be-
tween Canonical objects and Non-Afforded objects,
where Canonical objects expectedly received signif-
icantly higher rankings than Non-Afforded objects
(Canonical: M=4.86, SD=2.28, Non-Afforded:
M=1.02, SD=0.19, p<0.001), confirming that GPT-
4V distinguishes between objects for their typical
use and objects which are clearly used atypically
in the given scenarios.

Regarding the prompt type, there appears to be
no significant interaction between condition and
prompt type (p = 0.179). We can assume from
this that the difference between using an explicit as
opposed to an implicit prompt does not impact the
model’s ability to discern affordances.

4.3 Discussion

Although the embeddings could not be extracted
from GPT-4V for a more nuanced understanding of
the model’s capabilities when it comes to recogniz-
ing object affordances, using a heuristic of assign-
ing ratings still underscores GPT-4V’s ability to

discern between afforded and non-afforded objects.
The model’s consistent performance regardless of
the prompt type used implies that GPT-4V’s abil-
ity to discern affordances is robust across different
linguistic framing.

These findings, which illustrate an underlying
grasp of sensibility across different affordance con-
ditions, highlights the model’s potential for nu-
anced understanding of context and utility, towards
human-like processing. Even without direct sen-
sory experience and interaction with the physical
world, GPT-4V’s training of textual and visual data
has enabled the model to develop the capability
to interpret and contextualize object affordances
with a depth that approaches human-like intuitions
about the world.

5 Conclusion

We found that GPT-4 Vision possesses the capabil-
ity to effectively distinguish between contextually
appropriate and inappropriate objects, while Im-
ageBind exhibits limited sensitivity with regards
to affordances. This variation highlights that the
integration of multimodal data alone does not guar-
antee enhanced cognitive abilities across different
MLLMs.

6 Limitations

A primary limitation of this study is the restricted
dataset size on which the models were tested, as
well as the type of data. The synthetic images, cre-
ated using OpenAI’s DALL-E, may not be fully
representative of the complexities found in real-
world objects. The natural images, sourced man-
ually from the internet, may bias towards repre-
sentations that are more commonly shared online.
Additionally, with only 36 scenarios between the
synthetic and natural datasets, the limited dataset
size can impact the statistical power of the analysis.
And while this study explores the capabilities of
MLLMs, we lack a direct comparison with human
data on the same tasks. Without comparison to
human benchmarks, it’s difficult to gauge whether
the models’ performance is honestly reflective of
human-like understanding.
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A Appendix

Further details of the models used for Study 1 and
Study 2.

ViT-B/32: Trained on 400 million 224x224
pixel image-text pairs over 32 epochs, patch size
of 32px and 120M parameters. It is the base model
from Radford et al., 2021.

ViT-L/14: Trained on 400 million 224x224
pixel image-text pairs over 32 epochs, fine-tuned at
336px for an additional epoch, patch size of 14px
and 430M parameters. Best-performing model
from Radford et al., 2021.

ViT-H/14: Trained on LAION 2B dataset for
16 epochs, 1B parameters and based on the CLIP
architecture.

ViT-G/14: Trained on the LAION 2B dataset
for about a third of the epochs, 2B parameters and
based on the CLIP architecture.

ImageBind: Consists of a Transformer archi-
tecture, in which the text and image encoders are
based on the ViT-H/14 model. An MLLM which
learns a joint embedding across six modalities from
images, text, audio, depth, thermal to IMU data.
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