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1 Introduction

Nowadays, online platforms such as Yelp, Google Reviews, and Reddit have become the primary
interface between business and their customers. Such platforms allow users to comment and rate the
business, creating a wealth of metadata that reflects consumer preferences and perceptions. These
data provide a unique opportunity for business owners to make informed, data-driven decisions. We
developed a hybrid recommender system that combines collaborative and content-based filtering,
recommending potential customers to specific business owners. The model was trained using key
business features, historical interactions between businesses and customers, and temporal trends. We
trained two advanced models, with one taking the temporal feature and one taking the sequential
feature of the dataset to predict the target value, which is the rating that customers might leave on the
business. Once trained and given a learned business ID, the model will identify customers who have
never interacted with the business but would give a high rating.

∗documentations at https://kbian.org/RSDB/
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2 Related Works

We use a dataset collected from Google Maps local user review by UC San Diego researchers. This
dataset serves as a foundational data source for two significant works [7, 13]. In [13], the author
proposes a personalized multi-modal framework to generate diverse textual and visual explanations
for recommendation. Specifically, they collect a large-scale dataset from Google Maps user review
and filter a subset of high-quality visual data specifically for generating visual explanations. In [7], the
author introduces a new method called cluster-assisted contrastive learning (CCL), which mitigates
the issue of noisy negatives in negative sampling. They collected large-scale textual data from Google
Maps user reviews in the restaurant category, which was then used in topic phase mining. Our work
builds on the datasets established by these two papers, which offer rich contextual data about user
reviews and business information.

Similar datasets studies in the past include Yelp reviews data [1] and Amazon product reviews
data [4], which have been extensively used for recommender systems, sentiment analysis, text
mining, etc. These datasets share some similar characteristics, such as user-generated content,
diverse textual information, and user-business matching, making them suitable for developing all
kinds of recommendation system task. However, the Google Maps Local Review dataset we used
distinguishes itself from other datasets through its focus on users reviews for diverse local physical
business and geospatial context. The dataset aligns with our problem definition of recommending
potential customers to business owners.

Sequential recommendation focuses on predicting the user’s next interactions with items by modeling
the dynamics and temporal preference. To address this challenge, some of the state-of-the-art methods
employ advanced models such as Recurrent Neural Networks recommendations [9], Transformer
architecture recommendations [12], and Large Language Model recommendations [2], etc. For
instance, in [9], the author proposed FitRec, an LSTM-based framework for context-aware modeling
for fitness data. The method uses within-activity and across-activity fitness data to model the user’s
workout profile and short-term heart rate dynamic. The model uses a two-layer stacked LSTM
and an encoder-decoder network with attention for modeling user interaction. The methods aim to
recommend potential workout plans for users and to predict heart rate changes during workouts. In
[12], the author introduces BERT4Rec, a Bidirectional Encoder Representation from Transformers
for sequential Recommendation to model user interactions. The Transformer architecture is known
for the self-attention mechanism, which captures complex dependencies across the entire context
sequences. The author trained a bidirectional model to predict the masked items by conditioning on
both left and right contexts. The approaches allow for a better representation of the sequential user
interaction dynamic. The recent advancements in LLM have shown its remarkable ability, showing
promise for sequential recommendation. For example, in [2], the author proposes the Hierarchical
Large Language Model (HLLM), a two-tier architecture for sequential recommendation. The method
is composed of two LLMs, the Item LLM extracts context-rich features from the item description,
while the Users LLM predicts future user interest based on interaction history. HLLM offers excellent
scalability and achieves state-of-the-art performance on recommendation, specifically for item feature
extraction and user interest prediction. The conclusion and result of our work can be found in section
8 and section 9.

3 Predictive Task

Our predictive task is to develop a hybrid recommender system that combines collaborative and
content-based filtering to recommend potential customers to small business owners using Google
Local Review data [7, 13]. In particular, we will train a sequential recommendation model specifically
for predicting the user’s future rating with the business. To evaluate the model, we will use metrics:
Root Mean Square Error(RMSE), Mean Absolute Scaled Error(MASE), R-square(R2̂), and Accuracy.
These metrics will provide fair judgment on the models’ ability to predict the right target value and
variability of the data. After we have obtained the trained model, we will apply our model in the
downstream recommender system application. The downstream recommender will use the model
to predict users’ ratings of a given business they have never interacted with, then from there, the
system will rank the predicted users’ ratings and recommend these users who are more likely to
give high ratings to the given business. We hope our downstream recommender application can help
the business owner find their target customers easily, and hopefully, they can use this information
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to expand their business. To ensure a more privacy-preserving recommendation system, we have
removed all personally identifiable information (PII) during the data processing, feature engineering,
and downstream recommendation process. (Further implementation details of our downstream
application are described in section 7)

In order to evaluate our model for predicting rating, we use train-test-split to split our data into the
training set, testing set, and validation sets that respect the temporal order of observations. We use
the training set and the validation set to train and tune our model for good hyperparameters. We then
use the testing data to evaluate our model performance for unseen data. We use the following three
metrics to evaluate our performance: Mean Square Error/Root Mean Square Error, R-square, and
Mean absolute scaled error. In addition, we also employ qualitative measures to assess our model and
downstream application (which we further discuss and explain in section 8.2).

For comparison with the baseline model, we use a basic latent factor model [6] that only models
the interaction between user and items through latent rating interactions and bias terms. We use the
Factorized Personalized Markov Chains [11] and the Temporal Dynamic Latent Factor Model with
Neural Correlative [5] as our final model choice. We slightly modify the model to better fit with our
data and recommendation objective. These models are good at sequential recommendation and can
easily be scalable to large-scale datasets. We discuss our final model in detail with mathematical
formation in section 6.

Data preprocessing and feature engineering are described below in section 4 - Processing Data and
section 5 - Feature Engineering.

4 Processing Data

The Dataset we use contains review information on Google Maps made by customers on business
across the United States. Due to limited resources and time contain, we sample a subset of data
review data in California.

4.1 Data Overview

The raw data comes in two separate files: business metadata and review data. The business metadata
contains information about 15,291 businesses in California, structured into 13 columns. Each row
represents a business, and the columns include their unique identifier, business name, address, and so
on. On top of that basic information, they also include operating hours, longitude & latitude, and
business categories, which we use extensively in feature engineering. The review dataset represents
the interaction between customers and businesses, where each row is a review left by the customer on
the business. Some features of the review dataset include the review time, rating, etc.

4.2 Data Cleaning

Since we want to model the interaction between customers and specific businesses, we prepare data
with procedures that will produce a single dataframe where each row represents interactions between
a single user and a specific business and the rating made by the user. In cleaning business metadata,
we rearrange and keep key columns for readability and clarity. Out of all the cleaning procedures,
these are the cortical steps we took:

1. We dropped the "State" column to avoid multicollinearity. The "State" column captures
whether the store was open or not at the time the dataset was created, which is covered by
the "Hours" column.

2. To clean review information data, we conduct a similar procedure. For instance, we removed
any review with a timestamp before February 8th, 2005. Therefore, we dropped all entries
with review time after February 8th, 2005.

3. To handle missing values in both datasets, we removed rows containing missing data because
the percentage of missing values was minimal, ensuring the analysis remained unaffected.

4. To ensure the relevance of the reviews dataset to business, we applied a series of filtering to
exclude outliers and less significant data points. We first focused on eliminating business
categories with limited representations. Rows with categories that appear fewer than 20
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times in the entire dataset were removed to reduce noise and focus on more prominent
business categories. For other numerical columns, we removed outliers that were three
standard deviations from the mean value.

At last, we remove reviews from anywhere outside of the California boundary. With cleaned business
metadata and review data, we merge the data set using the common identifier of businesses. It is
worth pointing out that the rating(target value) is unequally distributed, with a rating of 5 taking a
higher proportion. We can visualize our ratings by the heat map below.

Figure 1: Distribution of rating across week and hours of the day

5 Feature Engineering

We conduct feature engineering with a few assumptions. Our model takes a hybrid approach to
recommendation, using a mix of static features such as geographic location, business categories and
interaction between user and business, as well as dynamic temporal features like sliding-window
rolling average to capture sequential trend for prediction.

5.1 Static features

For locations, we created 20 bins based for both longitude and latitude, resulting in a total of 400
bins for different areas, and one-hot encoding was applied to capture spatial characteristics. These
features help represent the spatial distribution of businesses.

The figure below illustrates the distribution of average review ratings and the number of reviews across
various locations. Notably, areas with a higher review count generally align with densely populated
regions within the state. This suggests a correlation between population clusters and business activity,
reflected in the volume of reviews. The visualization highlights both the concentration of reviews and
the average sentiment expressed by users in these areas.
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Figure 2: California Pop-
ulation Heatmap (2010)

Figure 3: Location Map

Another interesting feature shown by average review rating distribution is that people tend to give
high ratings (4.0-4.8) compared to lower. This correlates to our exploration of temporal data, which
will be talked about below.

We also observed and picked out some key categories in our data frame (Grocery stores, Restaurants,
Shopping malls ), and applied one-hot encoding to capture the presence of these categories in each
business entry. This allows us to incorporate categorical data into numerical form for downstream
analysis. This graph tracks the distribution of those four categories.

5.2 Temporal features

Upon inspection, the dataset contains reviews across a 20 years time period (2005-2021), providing a
rich temporal context for analysis. We created a figure capturing a clustering analysis of rating based
on months across the year.

By grouping months with similar numerical characteristics, the KMeans algorithm identifies five
unique clusters. These clusters highlight periods of similarity in user behavior or business performance
over time, which leads us to consider creating time-based features for a temporal model. We present
an additional graph showing the review trend for 10 top businesses over time based on our dataset. We
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Figure 4: Enter Caption

can see a clear peak in business reviews from 2017 to 2020, and a sharp decrease in 2020 potentially
caused by the covid-19 pandemic.

In our preprocessing pipeline, we emphasized standardizing key variables to ensure consistency
across the dataset. Two specific standardization processes are noteworthy:

We standardized the review time column by converting raw unix timestamps into a normalized z-score
representation. This transformation ensures that temporal data is comparable by preventing outliers
from skewing our data, and allowing direct comparison of model coefficients. The normalization
involves subtracting the mean and dividing by the standard deviation, with an additional step to
calculate standardized user-specific average review times.

We also standardized the ‘hours’ column by taking into account the various formats it can take. We
developed custom parsing logic to handle diverse time representations and computing the total weekly
operating hour for each business, elaborated below.

Besides standardization, we also engineered other temporal features to facilitate usage in our model:

We categorized review timestamps into discrete bins for time-series analysis. We also calculated and
normalized each user’s average review submission time, which helps capture temporal preferences
and habits of reviewers.

We were able to extract two features from the “hours” column: whether the business is open during
weekends, which could affect its customer base and review frequency, and the total hours of operation
per week that captures availability as a predictor for customer interaction.

An interesting trend to notice is how people’s rating seem to “converge” over time. By inspecting
the average rating over 30 days period by a sliding window approach, we see people tend to give
more diverse ratings during the ten year period from 2006 to 2016, while the range of average ratings
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becomes smaller and smaller marching into the early 2020s, which corresponds to the high amount
of near 4.0 ratings in the graph of average review by location above.

6 Modeling Dynamics in Time

There are usually two approaches to tackling dynamics in time: one that focuses on using temporal
features (timestamps) and one that focuses on looking at the order of things (sequence). We will
introduce two common approaches (one from each family) in this section, which are written in more
detail in [8].

6.1 Baseline Latent Factor (BLF)

For our baseline evaluation, we are using a plain latent factor model [6] that only models the
interaction between user and item through rating interactions (γu and γi) and bias terms (user bias
βu, item bias βi, and global bias βg). We also added regularization on each of the terms mentioned
above, which we can frame the whole optimization using MSE with the following.

argmin
β,γ

∑
u,i

(βg + βu + βi + γu · γi −Ru,i)
2
+ λ

[∑
u

β2
u +

∑
i

β2
i +

∑
i

∥γi∥22 +
∑
u

∥γu∥22

]

6.2 Factorized Personalized Markov Chain Variants (FMPC-V)

Factorized Personalized Markov Chains [11] (FPMC) extends from Markov Chain model using
first-order Markovian property. It includes both user-item interactions and item-item sequential
transitions and represent them as a factorized latent factor model. The core idea of FPMC is to do
two things:

1. Item should match user preferences.
2. Next item should be consistent with previous item.

Such model would be robust to capture the short term temporal dependency of the ratings made on
users. To achieve this, we can use the scoring function f(i | u, j) that represent the probability of
seeing item i giving the joint probability of item j and the user u. We can use tensor decomposition
to reduce such probabilistic formulation into a latent factro formulation.

f(i | u, j) = γui · γiu︸ ︷︷ ︸
f(i|u)

+ γij · γji︸ ︷︷ ︸
f(i|j)

+ γuj · γju︸ ︷︷ ︸
f(u,j)

Where f(i | u) captures the compatibility between the user u and the next item i, which represents a
user-item interaction (personalized). f(i | j) captures the sequential relationship between the previous
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item j and the next item i, which represents thes sequential term (Markov chain). f(u, j) captures the
relationship between the user u and the previous item j. Notice that this last term is usually neglected
as user’s compatibility with previous item, already rated, is trivial and doesn’t matter. Our variants
expands upon this system and incorporated feature components into the model, the feature takes in
many format (for specifics reference section 5 for more details), but for demonstration purpose, we
can separate them into categorical and numerical features, which we use dense layer to incorporate
into the embeddings:

f(i | u, j,F) = γui · γiu︸ ︷︷ ︸
user/next item compatibility

+ γij · γji︸ ︷︷ ︸
next/previous item compatibility

+ βu + βi︸ ︷︷ ︸
user and next-item biases

+ w⊤Fcat︸ ︷︷ ︸
categorical embeddings

+ v⊤Fnum︸ ︷︷ ︸
numerical embeddings

+ bg︸︷︷︸
global bias

Traditionally, we would optimize FPMC with Bayesian Personalized Ranking [10]. However, we are
making a non-binary categorical prediction (rating). Thus we used plain MSE (mean square error)
for the optimization process, which can be framed as the following:

arg min
γ,β,w,v

∑
u,i,j

(
γui · γiu + γij · γji + βu + βi +w⊤F+ v⊤F+ βg −Ru,i

)2

+λ

(∑
u

β2
u +

∑
i

β2
i +

∑
u

∥γu∥22 +
∑
i

∥γi∥22 + ∥w∥22 + ∥v∥22

)
Notice that the features are directly embedded using embedding methods with neural networks.

6.3 Temporal Dynamic Latent Factor Model With Neural Correlative Variants (TDLF-V)

The second approach that we use in this system extends from the model that won the Netflix price [5].
We are essentially trying to incorporate temporal features into the model. Notice that this is a very
over-engineering approach, and the final model itself may be very specific to the dataset and domain
that it serves. This model extends from a traditional latent factor model and incorporated temporal
features, specifically, it includes bias terms that is specific to items βi(t) and assumes that the latent
factor with k component for user changes over time γu,k(t). The bias term includes both binning and
periodic changes:

βi(t) = βi + βi,bin(t) + βi,period(t)

In addition, we are using a neural correlative approach [3], so the latent factor is passed through
a neural network like the following (notice that the features are also shoved along into the neural
network by w⊤F):

f(γu, γi) = NN([γu, γi])

The whole prediction is farmed to be:

r̂u,i,t,F = µ︸︷︷︸
Global bias

+ βi︸︷︷︸
Static item bias

+ βi(t)︸︷︷︸
Dynamic item bias

+ βu︸︷︷︸
Static user bias

+ f(γu,k(t), γi,k)︸ ︷︷ ︸
Interaction score

+ w⊤Fitem︸ ︷︷ ︸
Item-specific feature effect

The optimization process can be framed as the bellow with regularization on each component (still
with MSE loss).

arg min
α,β,γ,W

∑
u,i

(
µ+ βi + βi(t) + βu + f(γu,k(t), γi,k) +w⊤Fitem −Ru,i

)2

+ λ

(∑
u

β2
u +

∑
i

β2
i +

∑
u

∥γu∥22 +
∑
i

∥γi∥22 +
∑

∥w∥22

)
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We have strong confidence in this model since this model would be effective in capturing the long-term
relationships between businesses and customers. During the implementation process, we realized
that the deviation function caused our model to perform poorly. We realize that the deviation was
made depending on the dataset itself. In the end, we decide to remove the deviation term.

We also fine-tune models to get the best performance. All of the parameters can be observed from
Table 2.

7 Downstream Application

Our downstream application provides business owners with actionable insights by identifying and
recommending users likely to interact positively with their services. This is the core intention of
this recommendation system. The application will take in a business ID (gmap_id), which is the
focal point for generating recommendations. The associated business categories of the business
ID are extracted. Customers(reviewers_id) that are used to interact with the extracted categories
are identified from the dataset, forming a candidate pool of potential customers. Then, the trained
model will predict the ratings of the given business ID with all candidate customers (reviewers_id).
The model will use the business’ metadata and users’ latest review timestamps to predict the rating.
Candidate users will be ranked based on their likelihood of giving high ratings. By default, the
application will recommend the top 20 users to business owners.

8 Results

The performance of both advanced and baseline model is evaluate quantitatively and qualitatively.
Quantitatively, we deploy several metrics measuring the performance of the model. Qualitatively, we
run our model on the downstream applications.

8.1 Quantitative Performance

We use four metrics to comprehensively evaluate model performance: Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), R2̂ (coefficient of determination), Mean Absolute Scaled Error
(MASE), and Accuracy. The results are summarized in Table 1. Among the models, the basic Latent
Factor model achieves the best performance with an MSE of 0.98, indicating that its predictions
are closest, on average, to the actual ratings. It also has the highest R2̂, suggesting it explains the
most variance in the dependent variable. In contrast, the FPMC Variants model yields an MSE of
1.13 and a negative R2̂, indicating that its predictions are worse than simply using the mean of the
dependent variable. This suggests that the advanced FPMC model underperforms relative to the
baseline model. However, the Temporal Dynamic model shows notable improvement, achieving
a competitive MSE of 0.99 and the highest accuracy of 0.42, demonstrating its potential for better
classification performance. We highly emphasize the accuracy metrics because positive prediction is
critical to our final recommendation.

8.2 Qualitative Performance

To evaluate the model’s performance, we randomly selected five business IDs (gmap_id) and analyzed
the users recommended by each model. Interestingly, all three models produced highly similar sets
of recommended users, indicating consistent prediction patterns across different approaches. Upon
closer examination, the recommendations were contextually relevant and demonstrated the model’s
ability to capture nuanced user behaviors.

For instance, when the target business belonged to the category “Sushi restaurant,” the majority
of recommended users had a history of frequent interactions with categories such as fast food and
breakfast restaurants. This suggests the model effectively identifies users with dining preferences
that overlap or align with the target business type. Furthermore, these users consistently provided
high ratings, averaging 5, to the restaurants they previously interacted with. This trend highlights the
model’s ability to prioritize users who not only exhibit similar preferences but also demonstrate a
likelihood of giving favorable feedback, making them highly valuable for business owners.

9



Model MSE RMSE R2 MASE ACC
Latent Factor Model 0.968255 0.983999 0.092328 0.817679 0.382959
FPMC Variants 1.286426 1.134207 -0.205936 1.064545 0.238363
Temporal Dynamic Variants 0.980515 0.990210 0.080835 0.809500 0.427182

Table 1: Performance Metrics for Different Models

Model Patience Min Delta Learning Rate Schedule Embedding Dim.
Basic Latent Factor Model 5 0.001 0.001 20
Temporal Latent Factor Model 5 0.001 0.00066501 90
Factorized Personalized Markov Chain 5 0.001 0.00022001 20

Model Dense Units L2 Regularizer Time Bins
Basic Latent Factor Model NAN 0.001 NAN
Temporal Latent Factor Model 128 0.00121 30
Factorized Personalized Markov Chain 20 0.0066295 NAN

Table 2: Hyperparameters for Different Models (Split Representation)

9 Conclusion & Discussion

9.1 future improvement

One limitation of the project is its reliance on a relatively small dataset. While there are 666,324,103
reviews in total, we only train the data set on 1% of the data. This may not fully capture the diversity
of the full dataset. Future work should aim to incorporate training on the entire dataset. In addition,
we only focus on the training model with the California data set. The model might be more robust
and powerful in predicting the creation, considering consumers’ interactions from one state to another.
Moreover, standard methods are lacking in the validation of downstream applications. In this project,
we evaluate the downstream result based on common sense and manual inspection. Thus, future work
can be done on developing methods to validate the downstream application result and the reason for
the similar performance of the three models. Both of the advanced models did not perform well in
terms of R-square and RMSE. We hypothesize the root cause to be the quality of data. The limited
data resources cause the advanced model to be bad in terms of MSE. For future work, more data and
features can be created to achieve a better performance.

9.2 conclusion

This study developed a hybrid recommender system leveraging collaborative and content-based
filtering to help business owners identify potential customers. The model effectively analyzed
sequential dynamics using Google Local Review data, producing robust and contextually relevant
recommendations. While the approach shows promise, future work should focus on scaling to larger
datasets, incorporating cross-state data, and standardizing validation methods to enhance applicability
and impact.
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10 Appendix

10.1 Additional temporal clustering
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10.2 Additional heat maps

12



10.3 Additional rolling average

Figure 5: Enter Caption
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10.4 Additional geographical visualization
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