System Structure
RPLH Systems¶
We hope to setup an systematic and modularzied way of doing multi-agent communication for less parametrized language models. We have implemented multiple instances of the RPLH system dpending on vanilla or efficient version. Here is the main breakdown of the code:
rplh/
├── env/
│   └── env.py
├── systems/
│   ├── d_efficient/
│   │   ├── memory.py
│   │   └── rplh_inference.py
│   ├── h_efficient/
│   │   ├── execution_checker.py
│   │   ├── memory/
│   │   │   ├── memory_standard.py
│   │   │   └── memory_agent.py
│   │   ├── rplh_inference.py
│   │   └── rplh_agent_inference.py
│   ├── h_vanilla/
│   │   ├── execution_checker.py
│   │   ├── memory.py
│   │   └── rplh_inference.py
├── llm/
│   ├── language_model.py
│   └── response_model.py
├── rendering/
│   ├── render_conversation.py
│   ├── render_states.py
│   └── animations.py
├── evaluation/
│   ├── evals.py
│   ├── energy.py
│   ├── embed.py
│   └── get_data.py
├── test.py
└── inference.py
- There are many shared features across all different type of communication system, which we ahve modularized into the llmfolder,envfolder, or therendeiringfolder for both using it in the vanilla and efficient models. In addition, because of implementation differences, files such asexecution_checker.py,memory.py, and the main inference looprplh_inference.pymay be different, which is why each system has its own unique implementation.
- The d_efficient(efficient implementation of decentralized framework) is a particular instance of theh_efficientsystem (our hallucination system) where the inference loops and memory module is adjusted.
- Both h_efficientandh_vanillaare our hallucination system with slight differences in implementation, refer to these links for more details:
- We have created inference functions in each of the system to be called seperately, or an direct interface can be called by specifying args on the root folder level of rplh (inference.py).