
Standard Model For Machine Learning

Kaiwen Bian

December 3, 2024

Standard Model Paper.

All About Constraint Solving

The standard model is a new perspective of looking at all types of traditional learning as
a constraint solving procedure. RL is a search and optimization process under the
reward constraint. We can also think of supervised learning not as finding patterns in
data, but as a optimization or a search in the landscape of weights with the constraint of
data. Think how we are doing projected gradient descent (Hard constraint) or regular-
ized gradient descent (Lagrangian constraint) where we are projecting the steps onto a
subspace following the constraint requirement. Then our constraint in supervised setting
is just constraining (a strict constraint) all posible weight world steps to a data space.

Panoramic Learning

Contemporary ML and AI research has resulted in a large multitude of learning paradigms
(e.g., supervised, unsupervised, active, reinforcement, adversarial learning), models, op-
timization techniques, not mentioning countless approximation heuristics and tun-
ing tricks. However, they all seems to fall apart when extending to generalized exam-
ples. Thus, a standardized ML formalism is highly needed where it offers a principled
framework for understanding, unifying, and generalizing current major paradigms
of learning algorithms, and for mechanical design of new approaches for integrating
any useful experience in learning.

This model try to study the underlying connections between a range of seemingly
distinct ML paradigms. Each of these paradigms has made particular assumptions
on the form of experience available. The SE formulates a rather broad design space of
learning algorithms. We show that many of the well-known algorithms of the above
paradigms are all instantiations of the general formulation. The list consists of three
principled terms:

• Experience term: Offers a unified language to express arbitrary relevant infor-
mation to supervise the learning.

• Divergence term: Measures the fitness of the target model to be learned.

• Uncertainty term: Regularizes the complexity of the system.

1

https://hdsr.mitpress.mit.edu/pub/zkib7xth/release/2#:~:text=Likewise%2C%20it%20is%20a%20constant,algorithms%2C%20and%20eventually%20serves%20as

Hopefully this paradigm would it offer guiding principles for designing algorithmic ap-
proaches to new problems in a mechanical way. Designing a problem solution boils
down to choosing what experience to use depending on the problem structure and avail-
able resources, without worrying too much about how to use the experience in the train-
ing.

Maximum Entropy: One Subset Case

The maximum entropy formalism provides an alternative insight into the classical learn-
ing frameworks of MLE, Bayesian inference, and posterior regularization. It provides a
general expression of these three paradigms as a constrained optimization problem,
with a paradigm-specific loss on the model parameters θ and an auxiliary distribu-
tion q, over a properly designed constraint space Q where q must reside:

min
q,θ

L(q, θ)

s.t. q ∈ Q

We will see this type of formulation is one subset case of teh general model.

Likelihood = Constraints Randomness

This probabilistic and statistical learning paradigms built on the maximum like-
lihood principles, Bayesian theories, variational calculus, andMonte Carlo sim-
ulation have led to much of the foundation underlying a wide spectrum of probabilistic
graphical models, exact/approximate inference algorithms, and even probabilistic logic
programs suitable for probabilistic inference and parameter estimations in multi-
variate, structured, and fully or partially observed domains. While the paradigms built
on convex optimization, duality theory, regularization, and risk minimization have
led to much of the foundation underlying algorithms such as support vector machine,
boosting, sparse learning, structure learning in non-convex situation.

By naturally marrying the probabilistic frameworks with the optimization-theoretic
frameworks, the maximum entropy viewpoint had played an important historical role in
offering the same lens to understanding several popular methodologies such as maximum
likelihood learning, Bayesian inference, and large margin learning. We will start deriving
the standard model’s first component. We know MLE as:

max
θ

Ex∼D [log pθ(x)]

min
θ

−Ex∼D [log pθ(x)]

MLE is known to be intimately related to the maximum entropy principle, especially
when this assumed distribution is the exponential distribution (Z(θ) is the normalization
factor):

2

pθ(x) =
exp {θ · T (x)}

Z(θ)

In MaxEnt, rather than assuming a specific parametric from of the target model distri-
bution, denoted as p(x), we instead impose constraints on the model distribution: in the
supervised setting, the constraints require the expectation of the features T (x) (sufficient
statistics of the data) to be equal to the empirical expectation:

Ep [T (x)] = Ex∗∼D [T (x∗)]

The objective is to find a distribution that maximizes entropy, subject to matching certain
empirical features. Intuitively, this is saying to choose the distribution that has the
greatest amount of uncertainty or ”spread,” subject to certain known constraints. This
results in a distribution that ”covers” all possibilities fairly without going to much of
what the data provides. We will later see that this is just a special case of the
general model.

max
p(x)

H(p(x))

s.t. Ep [T (x)] = Ex∼D [T (x)]

p(x) ∈ P(X)

Using 2 Lagrangian solver (θ for MaxEnt constrain and µ for normalization constrain):

L(p, θ, µ) = H(p(x))− θ · (Ep [T (x)]− Ex∼D [T (x)])− µ
(∑

x
p(x)− 1

)
Setting zero with respect to p using the Lagrangian, we get:

p(x) =
exp {θ · T (x)}

Z(θ)

and pluging in:
L(θ) = Ex∼D [θ · T (x)]− logZ(θ)

Which is exactly like MLE that we want to do earlier. Thus maximum entropy is dual to
maximum likelihood. It provides an alternative view of the problem of fitting a model
into data, where the data instances in the training set are treated as constraints,
and the learning problem is treated as a constrained optimization problem.

Untractable to Tractable

Unsupervised MLE is using latent variables and direct optimization of the marginal log-
likelihood is typically intractable due to the summation over y.

min
θ

−Ex∼D

[
log
∑
y∈Y

pθ(x, y)

]

3

However, it is solvable using EM and ELBO. Let q(y|x) represent an arbitrary auxiliary
distribution acting as a surrogate of the true posterior p(y|x), known as the variational
distribution:

− log
∑
y

pθ(x, y) = −Eq(y|x)

[
log

pθ(x, y)

q(y|x)

]
−KL (q(y|x)∥pθ(y|x))

≤ −Eq(y|x)

[
log

pθ(x, y)

q(y|x)

]
= −H(q(y|x))− Eq(y|x) [log pθ(x, y)] := L(q, θ)

We can then do E-step and M-step:

E-step: q(n+1)(y|x) = pθ(n)(y|x)

M-step: max
θ

Eq(n+1)(y|x) [log pθ(x, y)]

When the model pθ(x, y) is complex (e.g., a neural network or a multilayer graphical
model), directly working with the true posterior in the E-step becomes intractable, so we
select a restricted family Q′ of the variational distribution q(y) such that optimization
w.r.t. q within the family.

s

Overall, the MaxEnt perspective has formulated unsupervised MLE as an optimization-
theoretic framework that permits simple alternating minimization solvers. Starting
from the upper bound of negative marginal log-likelihood with maximum entropy and
minimum cross entropy, the originally intractable MLE problem gets simplified, and a
series of optimization algorithms, ranging from (variational) EM to GP to wake-sleep,
arise naturally as an approximation to the original solution. We will see later that
this can also be deemed a special case of the standard model.

Another Classic: Bayesian Inference

Interestingly, the the maximum entropy principle can also help to reformulate Bayesian
inference as a constraint optimization problem for MLE. Bayesian approach
for statistical inference treats the hypotheses (parameters θ) to be inferred as random
variables. Assuming a prior distribution π(θ) over the parameters, and considering a
probabilistic model that defines a conditional distribution p(x|θ), then based on Bayes
theorem:

p(θ|D) =
π(θ)

∏
x∗∈D p(x∗|θ)
p(D)

and for continuous probabilistic functions:

p(D) =

∫
θ

π(θ)
∏
x∗∈D

p(x∗|θ) dθ

4

By reformulating the statistical inference problem from the perspective of information
processing and rediscovering Bayes’ theorem as the optimal information processing
rule, we can find its connections to MaxEnt.

Statistical inference can be seen as a procedure of information processing where the
system receives input information in the form of prior knowledge and data, and
emits output information in the form of parameter estimates. An efficient inference
procedure should generate an output distribution such that the system retains all input
information and not inject any extraneous information.

The learning objective is thus to minimize the difference between the input (q(θ) is
our structured representation of input beliefs about θ) and output (posterior p(θ|D))
information w.r.t. the output distribution. We need a way to measure how close q(θ) is
to p(θ|D). We can down so by minimizing the KL divergence between q(θ) and p(θ|D):

KL(q(θ)∥p(θ|D)) = Eq(θ) [log q(θ)− log p(θ|D)]

Expanding this expression using Bayes’ theorem for p(θ|D), we get:

KL(q(θ)∥p(θ|D)) = Eq(θ)

[
log q(θ)− log π(θ)−

∑
x∗∈D

log p(x∗|θ)

]
+ log p(D)

This KL divergence can be rewritten as:

KL(q(θ)∥p(θ|D)) = Eq(θ) [log q(θ)] + log p(D)− Eq(θ)

[
log π(θ) +

∑
x∗∈D

log p(x∗|θ)

]

Remember that the entropy term’s definition is written as H(q) = −Eq(θ) [log q(θ)] =
−
∑

θ q(θ) log q(θ). Thus, we can swap out the Eq(θ) [log q(θ)] here.

KL(q(θ)∥p(θ|D)) = −H(q(θ)) + log p(D)− Eq(θ)

[
log π(θ) +

∑
x∗∈D

log p(x∗|θ)

]

Minimizing this KL divergence with respect to q(θ):

min
q(θ)

− H(q(θ)) + log p(D)− Eq(θ)

[
log π(θ) +

∑
x∗∈D

log p(x∗|θ)
]

s.t. q(θ) ∈ P(Θ)

Here P(Θ) is the space of all probability distributions over θ. This is probably one of
the most similar formulation to the standard model, this is also a special case
of the SE.

5

More Posterior Regularization

we have seen the standard normality constraint of a probability distribution being im-
posed on the posterior q. It is natural to consider other types of constraints that
encode richer problem structures and domain knowledge, which can regularize
the model to learn desired behaviors. This is the posterior regularization or regularized
Bayes:

min
q,ξ

− H(q(θ))− Eq(θ)

[∑
x∗∈D

log p(x∗|θ)π(θ)
]
+ U(ξ)

s.t. q(θ) ∈ Q(ξ)

ξ ≥ 0

Notice that log p(D) is a constant with regard to the optimization problem, so we can
drop this term directly. In here, we also added constraints with ξ being a vector of slack
variables and U(ξ) a penalty function with Q(ξ) being a subset of valid distributions
over θ that satisfy the constraints determined by ξ.

The optimization problem is generally easy to solve when the penalty/constraints are
convex and defined with respect to a linear operator (e.g., expectation) of the posterior
q. For example, let T (x∗; θ) be a feature vector of data instance x∗ ∈ D, the constraint
posterior set Q(ξ) can be defined as:

Q(ξ) := {q(θ) : Eq [T (x
∗; θ)] ≤ ξ, ∀x∗ ∈ D}

which bounds the feature expectations with ξ.

Standard Model of Machine Learning

The previous example is demonstrating a special case of this standard formulation. This
general formulation for learning a target model via a constrained loss minimization
program. Without loss of generality:

1. Let t ∈ T be the variable of interest, for example, the input-output pair t = (x, y)
in a prediction task, or the target variable t = x in generative modeling.

2. Let pθ(t) be the target model with parameters θ to be learned.

3. Let q(t) be an auxiliary distribution or the true hidden distribution (In the previous
Bayesian case the true hidden distribution is the input distribution and we try to
minimize it against posterior).

The Standard Equation (SE) can be written as:

min
q,θ,ξ

− αH (q) + β D (q, pθ) + U(ξ)

s.t. − Eq

[
f
(θ)
k

]
≤ ξk, k = 1, . . . , K.

6

There are 3 key components:

• The uncertainty function H (·) that controls the compactness of the output model,
for example, by regulating the amount of allowed randomness while trying to fit
experience.

• The divergence function D (·, ·) that measures the distance between the target model
to be trained and the auxiliary model, facilitating a teacher–student mechanism as
shown below.

• The experience function, introduced by a penalty term U(ξ), which incorporates

the set of ‘experience functions’ f
(θ)
k that represent external experience of various

kinds for training the target model.

• The hyperparameters α, β ≥ 0 that enable trade-offs between these components.

Experience Function

All diverse forms of experience that can be utilized for model training (data examples,
constraints, logical rules, rewards, and adversarial discriminators) can be encoded as an
experience function. It provides a unified language to express all exogenous infor-
mation about the target model. They all contribute to the optimization objective
via the penalty term U(ξ) over slack variables ξ ∈ RK applied to the expectation
Eq [fk]. The effect of maximizing the expectation is such that the auxiliary model q is
encouraged to produce samples of high quality in light of the experience.

Divergence Function

Divergence function D (q, pθ) measures the ‘quality’ of the target model pθ in terms of
its distance with the auxiliary hidden true model q. The divergence function D(·, ·)
determines the specific optimization problem.

Uncertainty Function

Uncertainty function H(q) describes the uncertainty of the auxiliary distribution q and
thus controls the complexity of the learning system. One should pick the most uncertain
solution among those that fit all experience.

All Subset of SE

The auxiliary hidden distribution q relaxes the learning problem of pθ, originally only
over θ, to be now alternating between q and θ. Here q acts as a conduit between

7

the exogenous experience and the target model:

• It subsumes the experience (by maximizing the expected f value).

• It also passes incrementally to the target model (by minimizing the divergence D).

Thus, achieving balanced learning.

Notice that this is a standard format that can derive any of the classical
algorithm and we can use numerous other algorithm to solve these problems.
There are also great flexibility of choosing the surrogate distribution q, ranging from the
principled variational approximations for the target distribution in a properly relaxed
space (e.g., mean fields), to the arbitrary neural network-based inference networks that
are highly expressive and easy to compute.

Classical examples including EM, variational EM, wake-sleep, forward and backward
propagation are all direct instantiations or variants of the above teacher-student
mechanism with different choices of the form of q. More generally, a broad set of
sophisticated algorithms, such as the policy gradient for reinforcement learning and the
generative adversarial learning, can also be easily derived by plugging in specific designs
of the experience function f and divergence D.

Teacher-Student (EM) Optimization of SE

The SE formulation is super good, but how do we optimize it? Again, we can do the
classical EM update format to find the hidden q distribution (parameters doesn’t
matter, the hidden distribution is what impact all important information,
then we just optimize parameter with regard to this distribution is fine);

1. Uncertainty as H(q) = −Eq[log q] (Shannon Entropy). Maximization of this process
is implictly represented in

2. Divergence as D(q, pθ) = −Eq[log pθ] (Cross Entropy).

3. Experience as f(t)

We will derive a EM formulation from the SE. Recall that SE is defined as:

min
q,θ,ξ

− αH (q) + β D (q, pθ) + U(ξ)

s.t. − Eq

[
f
(θ)
k

]
≤ ξk, k = 1, . . . , K.

We can do uncontraied optimization duality of it. The Lagrangian L becomes:

L(q, θ, ξ, λ) = −αH(q) + βD(q, pθ) + U(ξ) +
K∑
k=1

λk

(
−Eq[f

(θ)
k]− ξk

)
To find the optimal form of q, we take the derivative of L with respect to q and set
it to zero (this is taking a Functional derivative), a common approach in variational

8

Experience
Type

Experience
Function f

Div. D α β Algorithm

Data Instances fdata(x;D) CE 1 1 Unsupervised
MLE

Data Instances fdata(x, y;D) CE 1 ϵ Supervised MLE
Self-supervised fdata-self(x, y;D) CE 1 ϵ Self-supervised

MLE
Re-weighting fdata-w(t;D) CE 1 ϵ Data Re-

weighting
Augmentation fdata-aug(t;D) CE 1 ϵ Data Augmenta-

tion
Active Learning factive(x, y;D) CE 1 ϵ Active Learning
Knowledge frule(x, y) CE 1 1 Posterior Regu-

larization
Unified EM frule(x, y) CE R 1 Unified EM
Policy Gradient logQθ(x, y) CE 1 1 Policy Gradient
+ Intrinsic Re-
ward

logQθ(x, y) +
Qin,θ(x, y)

CE 1 1 Intrinsic Reward

RL as Inference Qθ(x, y) CE ρ > 0 ρ > 0 RL as Inference

Model Mimick-
ing

fmimicking
model (x, y;D) CE 1 ϵ Knowledge Dis-

tillation
GAN (Vanilla) Binary Classifier JSD 0 1 Vanilla GAN
GAN (f-GAN) Discriminator f-

divergence
0 1 f-GAN

WGAN 1-Lipschitz Disc. W1 0 1 WGAN
PPO-GAN 1-Lipschitz Disc. KL 0 1 PPO-GAN
Online fτ (t) CE ρ > 0 ρ > 0 Multiplicative

Weights

Table 1: Specifications of SE Components for Different Algorithms

inference. Since H(q) = −Eq[log q] and D(q, pθ) = −Eq[log pθ], the relevant terms in the
Lagrangian with respect to q are:

−αH(q) + βD(q, pθ) +
K∑
k=1

λkEq[f
(θ)
k]

Taking the derivative of this expression with respect to q and setting it to zero yields:

α log q(t) = β log pθ(t) +
K∑
k=1

λkf
(θ)
k (t)

Rearranging terms gives:

q(t) = exp

(
β log pθ(t) +

∑K
k=1 λkf

(θ)
k (t)

α

)

9

To ensure q remains a valid probability distribution (summing to 1), we introduce a
normalization factor Z:

Z =
∑
t

exp

{
β log pθ(n)(t) + f(t)

α

}
.

Then we have:

q(t) =
exp

(
β log pθ(t)+f(t)

α

)
Z

Here, we denote f(t) =
∑K

k=1 λkf
(θ)
k (t), representing the combined experience from mul-

tiple sources weighted by their respective multipliers.

Now we have a ideal q distribution that we can work with, such q distribution
comes from the SE. Now, in the M-step, we are just doing a MLE under such q
distribution, which is the equivalent with Minimizing the KL.

Teacher (E-Step): q(n+1)(t) = exp

{
β log pθ(n)(t) + f(t)

α

}
/Z

Student (M-Step): θ(n+1) = argmax
θ

Eq(n+1)(t)

[
log pθ(t)

]
We will use this as a running example for the next section. The transformation from
SE to more classical algorithm is not that trivial.

10

Experience Function

Different choices of f(t) result in learning algorithms applied to different problems. With
particular choices, the standard equation rediscovers a wide array of well-known algo-
rithms. We will only use the most interesting examples here to illustrate the
point.

Supervised Data Instances

For an arbitrary configuration (x0, y0), its probability pd(x0, y0) under the data distribu-
tion can be seen as measuring the expected similarity between (x0, y0) and true data
samples (x∗, y∗), and be written as

pd(x0, y0) = Epd(x∗,y∗)

[
I(x∗,y∗)(x0, y0)

]
.

Here the similarity measure is I(x∗,y∗)(x, y), an indicator function that takes the value 1 if
(x, y) equals (x∗, y∗) and 0 otherwise. The experience function would thus be defined as:

f := fdata(x, y;D) = logE(x∗,y∗)∼D
[
I(x∗,y∗)(x, y)

]
and plug in to the teacher model of expecting q. Notice that if we don’t care about
the divergence (β = 0), we don’t care about the true distribution, rather just fit
to data (what MLE is doing), then we have:

q(x, y) = exp

{
β log pθ(x, y) + fdata(x, y;D)

α

}
/Z ≈ exp {fdata(x, y;D)}

Z
= p̃d(x, y)

Then we maximize this (instead of true q-distribution, we directly optimized against the
data distribution):

max
θ

Et∼p̃d(x,y)

[
log pθ(t)

]
This is exactly the same as definition of MLE.

max
θ

Ex∗∼D [log pθ(x
∗)]

11

Self-Supervised Data Instances

Given an observed data instance t∗ ∈ D in general, one could potentially derive various
supervision signals based on the structures of the data and the target model. We
can could apply a “split” function that artificially partitions t∗ into two parts (x∗, y∗) =
split(t∗). Then the two parts are treated as the input and output for the properly
designed target model pθ(x, y):

f := fdata-self(x, y;D) = logEt∗∼D, (x∗,y∗)=split(t∗)

[
I(x∗,y∗)(x, y)

]
Now the target variable y is not costly obtained labels or annotations, but rather part of
the massively available data instances. The paradigm of treating part of an observed
instance as the prediction target is called ‘self-supervised’ learning.

Expected Reward Based Experience

We now consider a very different learning setting commonly seen in robotic control and
other sequential decision making problems. Experience is gained by the agent interacting
with external environment and collecting feedback in the form of rewards. Let’s say
t = (x, y) = (s, a) is the state-action pair. The first way to use the reward signals as the
experience is by defining the experience function as the logarithm of the expected
future reward, which leads to the classical policy gradient algorithm.:

f := f θ
reward(x, y) = logQθ(x, y)

Where:

Qθ(x, y) = E

[
∞∑
t=0

γtrt | x0 = x, y0 = y

]

With α = β = 1, we would arrive at policy gradient.

In E-step, we care about divergent to true distribution fully (remember that the q
distribution is derived from the SE):

q(n)(x, y) = pθ(n)(x, y)Qθ(n)

(x, y)/Z

In M-step, we update θ with the gradient. Different from traditional MLE, we want to
optimize not just the parameter to fit the (state, action) pair data, but also added extra
reward to optimize. Thus, we have two gradient at hand, one with the log-likelihood
of the data under the q-distribution, and the second is gradient of the reward function
directly.

∇θEq(n)(x,y)

[
log pθ(x, y) + f θ

reward(x, y)
] ∣∣∣

θ=θ(n)

We can use the log-derivative trick g∇ log g = ∇g. We can simplify:

12

∇θ log g(θ) =
∇θg(θ)

g(θ)
,

we can apply it as follows:

Eq(n)(x,y) [∇θ log pθ(x, y)] =
1

Z

∑
x,y

pθ(n)(x, y)Qθ(n)

(x, y)∇θ log pθ(x, y).

When substituting q as:

q(n)(x, y) = pθ(n)(x, y)Qθ(n)

(x, y)/Z

Similarly, we can rewrite the second term as:

Eq(n)(x,y)

[
∇θ logQ

θ(x, y)
]
=

1

Z

∑
x,y

pθ(n)(x, y)Qθ(n)

(x, y)∇θ logQ
θ(x, y).

Combining the two terms:

1

Z

∑
x,y

pθ(n)(x, y)Qθ(n)

(x, y)
(
∇θ log pθ(x, y) +∇θ logQ

θ(x, y)
)
.

We can rewrite this in conditional format to separate out the state and action (to match
policy gradient formula). This is the highly non-trivial part.

=
1

Z
·
∑
x

p0(x)∇θ

∑
y

pθ(y|x)Qθ(x, y)
∣∣∣
θ=θ(n)

Thus, we can say that:

Eq(n)(x,y) [∇θ log pθ(x, y)] + Eq(n)(x,y)

[
∇θf

θ
reward,1(x, y)

] ∣∣∣
θ=θ(n)

=
1

Z
·
∑
x

p0(x)∇θ

∑
y

pθ(y|x)Qθ(x, y)
∣∣∣
θ=θ(n)

=
1

Z
·
∑
x

µθ(x)
∑
y

Qθ(x, y)∇θpθ(y|x)
∣∣∣
θ=θ(n)

The final form is exactly the policy gradient up to a multiplication factor 1/Z.

13

