
‭Building Machines that Learn and Think like People‬
‭Current deep learning methods have achieved remarkable achievement in recognition & control,‬
‭demonstrating the power of‬‭gradient-based learning‬‭(ERM)‬‭and deep hierarchies of latent‬
‭variables (many probabilistic machine learning have also developed a lot, but it’s not in the‬
‭scope of this paper). However, truly human-like learning and thinking machines will have to‬
‭reach beyond current engineering trends in both what they learn and how they learn it,‬
‭specifically, we need to incorporate perspective from cognitive scientists & psychology‬
‭researchers:‬

‭1.‬ ‭Ground learning‬‭in intuitive theories of physics and‬‭psychology to support and enrich‬
‭the knowledge that is learned.‬

‭2.‬ ‭Build‬‭causal models of the world‬‭that support explanation‬‭and understanding, rather‬
‭than merely solving pattern recognition problems.‬

‭3.‬ ‭Harness‬‭compositionality and learning-to-learn‬‭to‬‭rapidly acquire and generalize‬
‭knowledge to new tasks and situations.‬

‭There are 2 different approaches towards computational intelligence:‬
‭1.‬ ‭The‬‭statistical pattern recognition‬‭approach treats‬‭prediction as primary, usually in the‬

‭context of a specific classification, regression, or control task.‬
‭a.‬ ‭Learning is about discovering features that have high-value states in common (a‬

‭shared label in a classification setting or a shared value in a reinforcement‬
‭learning setting) across a large, diverse set of training data.‬

‭2.‬ ‭The‬‭cognitive model building‬‭focuses on the models‬‭of the world and explanations‬
‭where learning is the process of model building.‬

‭a.‬ ‭Cognition is about using these models to understand the world, to explain what‬
‭we see, to imagine what could have happened that didn’t, or what could be true‬
‭that isn’t, and then planning actions to make it so.‬

‭The difference between pattern recognition and model building, between prediction and‬
‭explanation, is central to our view of human intelligence.‬‭Just as scientists seek to explain‬
‭nature, not simply predict it, we see human thought as fundamentally a model building‬
‭activity‬‭.‬

‭Assumptions For Computation Intelligence‬
‭Any computational model of learning must ultimately be grounded in the brain’s biological neural‬
‭networks.‬‭As long as natural intelligence remains‬‭the best example of intelligence, the project of‬
‭reverse engineering the human solutions to difficult computational problems will continue to‬
‭inform and advance AI‬‭.‬

‭-‬ ‭Future generations of neural networks will look very different from the current state-‬
‭of-the-art neural networks. They may be endowed with‬‭intuitive physics‬‭,‬‭theory of‬
‭mind‬‭,‬‭causal reasoning, and more‬‭.‬



‭-‬ ‭More structure and inductive biases could be built into the networks or‬‭learned from‬
‭previous experience with related tasks‬‭, leading to‬‭more human-like patterns of‬
‭learning and development.‬

‭-‬ ‭Learning with few data (learn-to-lean)‬‭: Networks may‬‭learn to effectively search for‬
‭and discover new mental models or intuitive theories, and these improved models will, in‬
‭turn, enable subsequent learning, allowing systems that learn-to-learn using previous‬
‭knowledge to make richer inferences from very small amounts of training data.‬

‭Reverse engineering human intelligence can usefully inform AI and machine learning, especially‬
‭for the types of domains and tasks that people excel at, including concept learning, scene‬
‭understanding, language acquisition, language understanding, speech recognition, creativity,‬
‭common sense, and general-purpose reasoning.‬

‭Three Ingredients for Intelligence‬
‭There are a few sets of ingredients that are important to human intelligence & learning. It can be‬
‭shown that no-pure computation in one area is good enough,‬‭a collaboration across domains is‬
‭what makes intelligence‬‭.‬

‭1.‬ ‭Developmental start-up software‬‭, or cognitive capabilities‬‭present early and are‬
‭fundamental to development. These types of inferences further accelerate the learning‬
‭of new tasks.‬

‭a.‬ ‭Intuitive Physics‬‭: infants know that objects will‬‭persist over time and that they‬
‭are solid and coherent.‬

‭b.‬ ‭Intuitive Psychology‬‭: infants understand that other‬‭people have mental states‬
‭like goals and beliefs, and this understanding strongly constrains their learning‬
‭and predictions.‬

‭2.‬ ‭Model building‬‭is the hallmark of human-level learning,‬‭or explaining observed data‬
‭through the construction of causal models of the world.‬

‭a.‬ ‭The early present capacities for intuitive physics and psychology are also causal‬
‭models of the world.‬

‭b.‬ ‭Primary job of learning is to extend and enrich these models and to build‬
‭analogous causally structured theories of other domains.‬

‭c.‬ ‭Children come with the ability and the desire to uncover the underlying causes of‬
‭sparsely observed events and to use that knowledge to go far beyond the paucity‬
‭of the data.‬

‭d.‬ ‭It might seem paradoxical that people are capable of learning these richly‬
‭structured models from very limited amounts of experience. We suggest that‬
‭compositionality‬‭and‬‭learning-to-learn‬‭are ingredients‬‭that make this type of‬
‭rapid model learning pos- sible‬

‭3.‬ ‭It is  remarkable how fast we can perceive,‬‭think‬‭,‬‭and‬‭put action in real time‬‭to act.‬
‭a.‬ ‭A‬‭model-free‬‭method can accelerate slow‬‭model-based‬‭inferences in‬

‭perception and cognition.‬



‭i.‬ ‭By learning to recognize patterns in these inferences, the outputs of‬
‭inference can be predicted without having to go through costly‬
‭intermediate steps (AlphaGo).‬

‭ii.‬ ‭Integrating neural networks that “learn to do inference” with rich model‬
‭building learning mechanisms offers a promising way to explain how‬
‭human minds can understand the world so well and so quickly.‬

‭b.‬ ‭Once a causal model of a task has been learned, humans can use the model to‬
‭plan action sequences that maximize future reward (RL)‬‭. We review‬
‭evidence that humans combine model-based and model-free learning algorithms‬
‭both competitively and cooperatively and that these interactions are‬‭supervised‬
‭by metacognitive processes‬‭.‬

‭i.‬ ‭The sophistication of human-like reinforcement learning has yet to be‬
‭realized in AI systems, but this is an area where crosstalk between‬
‭cognitive and engineering approaches is especially promising.‬

‭Symbolic to Sub-symbolic Computations‬
‭Understand the perspective, understand where you stand, and understand the challenges‬

‭Symbolic Computations‬
‭Alan Turing suspected that it was easier to build and educate a child machine than to try to fully‬
‭capture adult human cognition (Turing 1950).‬

‭-‬ ‭Turing pictured the child’s mind as a notebook with “‬‭rather little mechanism and lots‬
‭of blank sheets,” and the mind of a child machine as filling in the notebook by‬
‭responding to rewards and punishments‬‭, similar to‬‭reinforcement learning.‬

‭-‬ ‭It is a behavioral psychology perspective and also perspective of‬‭empiricism of modern‬
‭connectionist‬‭models–the idea that we can learn almost‬‭everything we know from the‬
‭statistical patterns of sensory inputs‬‭.‬

‭A similar sentiment was expressed by Minsky (1974): “I draw no boundary between a theory of‬
‭human thinking and a scheme for making an intelligent machine;‬‭no purpose would be served‬
‭by separating these today since neither domain has theories good enough to explain‬‭—or‬
‭to produce—enough mental capacity”‬

‭Much of this research assumed that human knowledge representation is symbolic and that‬
‭reasoning, language, planning and vision could be understood in terms of‬‭symbolic‬
‭operations‬‭.‬

‭Sub-symbolic Computations‬
‭Later perspective breaks the symbolic perspective further into sub-symbolic computations, that‬
‭thoughts about the nature of cognition is a‬‭parallel‬‭distributed processing (PDP)‬‭where we‬
‭conduct parallel computation by combining simple units to collectively implement sophisticated‬
‭computations (NN is the demo of sub-symbolic computations).‬



‭Neural network models and the PDP approach offer a view of the mind and intelligence more‬
‭broadly that is sub-symbolic. The knowledge learned by these networks would be‬‭distributed‬
‭across the collection of units rather than localized as in most symbolic data structures‬‭.‬

‭-‬ ‭The PDP perspective is compatible with “model building” in addition to “pattern‬
‭recognition.”‬

‭-‬ ‭Very little assumption should be built into the networks.‬
‭-‬ ‭Proponents of this approach maintain that many classic types of structured knowledge,‬

‭such as‬‭graphs, grammars, rules, objects, structural‬‭descriptions, and programs‬‭,‬
‭can be useful yet‬‭misleading metaphors for characterizing‬‭thought‬‭.‬

‭-‬ ‭These‬‭structures are more epiphenomenal than real‬‭,‬‭emergent properties of‬
‭more fundamental sub-symbolic cognitive processes‬‭.‬

‭More Than Distributed Is Needed‬
‭Concept learning + Generation + Prior + Higher level understanding +  CL flexibility‬

‭A different picture has emerged that highlights the importance of early‬‭inductive biases‬‭,‬
‭including core concepts such as number, space, agency, and objects, as well as powerful‬
‭learning algorithms that rely on‬‭prior knowledge to‬‭extract knowledge‬‭from small amounts of‬
‭training data. This knowledge is often‬‭richly organized‬‭and theory-like in structure‬‭, capable‬
‭of the‬‭graded inferences‬‭and productive capacities‬‭characteristic of human thought. There may‬
‭be 2 benchmarks in assessing performance.‬

‭1.‬ ‭Learning simple visual concepts (Supervised):‬
‭a.‬ ‭Humans learn from‬‭less examples but form a rich representation‬‭.‬
‭b.‬ ‭Humans‬‭learn a concept‬‭, that is a model of the class‬‭that allows their acquired‬

‭knowledge to be flexibly applied in new ways,‬‭generating‬‭new examples‬‭.‬
‭2.‬ ‭Learning to play the Atari game & Frostbite game (RL Control):‬

‭a.‬ ‭Too expensive learning -> Different learned representation between machines‬
‭and humans. Sparse feedback?‬

‭b.‬ ‭Huma understand higher-level‬‭cues‬‭with small hints,‬‭but DQN needs to have‬
‭sub-goals to actually learn, or it would be just trying random actions.‬

‭i.‬ ‭DQN needs achievement of sub-goals and proceeding to next sub-goals.‬
‭c.‬ ‭No flexibility to changes in game rules. People can learn models and use them‬

‭for arbitrary new tasks and goals. Although neural networks can learn multiple‬
‭mappings or tasks with the same set of stimuli (‬‭adapting their outputs‬
‭depending on a specified goal‬‭) these models require substantial training or‬
‭reconfiguration to add new tasks (Continual Learning Problem).‬

‭i.‬ ‭Once the environment has been established for AlphaGo or any RL, the‬
‭environment condition cannot be changed -> need to restart from scratch.‬

‭DQN does startes completely from scratch and humans have extensive prior experience before‬
‭they even starts ->‬‭this may be important why we need‬‭to have foundation models? No boost in‬
‭the flavor of large (almost too large set) of prior experiences‬‭?‬



‭Innate Intuitions For Grounding‬
‭Early in development, humans have a foundational understanding of several core domains.‬

‭-‬ ‭number (numerical and set operations),‬
‭-‬ ‭space (geometry and navi- gation),‬
‭-‬ ‭physics (inanimate objects and mechanics),‬
‭-‬ ‭psychology (agents and groups).‬

‭These c‬‭ore domains cleave cognition at its conceptual‬‭joints‬‭, and each domain is‬
‭organized by a set of entities and abstract principles relating the entities to each other‬‭.‬
‭The underlying cognitive representations can be understood as “intuitive theories,” with a causal‬
‭structure resembling a scientific theory.‬

‭Children seek out new data to distinguish between hypotheses, isolate variables, test causal‬
‭hypotheses, make use of the data-generating process in drawing conclusions, and learn‬
‭selectively from others.‬

‭Intuitive Physics For Generalization‬
‭At the age of 2 months, human infants expect inanimate objects to follow principles of‬
‭persistence, continuity, cohesion, solidity, and believe objects should move along smooth paths.‬
‭These expectations would guide later learnings.‬

‭People‬‭reconstruct a perceptual scene‬‭using‬‭internal‬‭representations‬‭of the objects and‬
‭their physically relevant properties (such as mass, elasticity, and surface friction) and forces‬
‭acting on objects (such as gravity, friction, or collision impulses).‬

‭-‬ ‭Relative to physical ground truth, the intuitive physical state representation is‬
‭approximate and probabilistic, and oversimplified and incomplete in many ways‬‭.‬
‭Still, it is rich enough to support mental simulations that can predict how objects will‬
‭move in the immediate future, either on their own or in responses to forces we might‬
‭apply.‬

‭The‬‭intuitive internal physics engine‬‭approach enables‬‭flexible adaptation to a wide range of‬
‭everyday scenarios and judgments in a way that goes beyond perceptual cues.‬



‭Instead of using a physics simulator,‬‭could neural networks be trained to emulate a‬
‭general-purpose physics simulator, given the right type and quantity of training data?‬‭However,‬
‭it is not sure if higher level would actually encode more generic physics properties instead of‬
‭just task-specific values.‬

‭What is actually learned? is  it just some specific things related to the task? Or is it a more‬
‭generic understanding of the world also captured ->‬‭same performance results does not imply‬
‭same learning‬‭.‬

‭Intuitive Psychology For Planning‬
‭At the very beginning, infants distinguish inanimate objects with animate objects to distinguish‬
‭who their parents are. Infants also‬‭expect agents‬‭to act contingently and reciprocally, to‬
‭have goals, and to take efficient actions toward those goals subject to constraints‬‭(these‬
‭goals can be socially directed). at around 3 months of age, infants begin to discriminate‬
‭antisocial agents that hurt or hinder others from neutral agents, and they later distinguish‬
‭between anti-social, neutral, and pro-social agents.‬

‭-‬ ‭Does this give the ability of higher level goal understanding?‬
‭-‬ ‭Models formalize explicitly mentalistic concepts such as “goal,” “agent,” “planning,”‬

‭“cost,” “efficiency,” and “belief,” used to describe core psychological reasoning in infancy.‬
‭-‬ ‭Bayesian inverse planning, or Bayesian theory of mind (ToM)‬

‭Planning computations may be formalized as solutions to MDP or POMDP, taking as‬‭input‬
‭utility‬‭and‬‭belief functions‬‭defined over an agent’s‬‭state-space‬‭and the agent’s‬‭state-action‬
‭transition functions‬‭, and returning a‬‭series of actions‬‭the agent should perform‬‭to most‬
‭efficiently fulfill their goals (or maximize their utility).‬

‭-‬ ‭By simulating these planning processes, people can predict what agents might do next,‬
‭or use‬‭inverse reasoning‬‭from observing a series of‬‭actions to infer the utilities and‬
‭beliefs of agents in a scene.‬

‭-‬ ‭Direct analogous‬‭to how simulation engines can be‬‭used for intuitive physics, to predict‬
‭what will happen next in a scene or to infer objects’ dynamical properties from how they‬
‭move.‬



‭-‬ ‭simulation-based reasoning in intuitive psychology can be nested recursively to‬
‭understand social interactions.‬‭We can think about‬‭agents thinking about other‬
‭agents‬‭.‬

‭Any full formal computational account of intuitive psychological reasoning needs to include‬
‭representations of agency, goals, efficiency, and reciprocal relations.‬

‭-‬ ‭Let us‬‭infer the beliefs, desires, and intentions‬‭of the experienced player.‬
‭-‬ ‭It is an early‬‭emerging property‬‭that helps us to‬‭share with others cognitive ability‬‭.‬
‭-‬ ‭Behavior is explained as acting under such belief,‬‭once inferred belief is established, no‬

‭need for actual experience to learn.‬

‭Learning As Rapid Model Expansion‬
‭Gradient-based methods can be seen as a “gradual adjustment of connection strengths” with a‬
‭large set of data. However,‬‭infants can grasp the boundary of the infinite set that defines‬
‭each concept from the infinite set of all possible objects‬‭(learning words) without a large set‬
‭of data.‬‭There may be some key concepts that should‬
‭be considered more than just searching starting from‬
‭nowhere‬‭. The three main objectives are all boosted by‬
‭each other, increasing performance of one would lead‬
‭to the increase of performance on the other and BPL is‬
‭a current model that somewhat does pretty well on all‬
‭three objectives.‬

‭Even with just a few examples, people can learn‬
‭remarkably rich conceptual models. One indicator of‬
‭richness is the variety of functions that these models‬
‭support. Beyond classification, concepts support‬
‭prediction, action, communication, imagination,‬
‭explanation, and composition. These abilities are not‬
‭independent; rather they hang together and interact, coming for free with the acquisition of the‬
‭underlying concept.‬

‭The ability of extending one learned concept or seeing the sub-components of one task to piece‬
‭it into a sub-component of a new task may be very relevant for continual learning and general‬
‭intelligence‬‭.‬

‭This richness and flexibility suggest that‬‭learning‬‭as model building is a better metaphor‬
‭than learning as pattern recognition‬‭. models are built‬‭upon rich domain knowledge rather‬
‭than starting from a blank slate.‬



‭Bayesian Program Learning As Demo of Ideal Models‬
‭BPL represents concepts as simple stochastic‬
‭programs: a structured procedures that generate‬
‭new examples of a concept when executed.‬
‭These programs allow the model to‬‭express‬
‭causal knowledge‬‭about how the raw data are‬
‭formed, and the probabilistic semantics allow the‬
‭model to handle noise and‬‭perform creative‬
‭tasks‬‭. Structure sharing across concepts is‬
‭accomplished by the compositional re-use of‬
‭stochastic primitives that can combine in new‬
‭ways to create new concepts.‬

‭Note that we are overloading the word model to‬
‭refer to the BPL framework as a whole (which is a‬
‭generative model‬‭), as well as the individual‬
‭concepts (or‬‭probabilistic models‬‭) that it infers‬‭from images to represent novel handwritten‬
‭characters, there is a hierarchy of models:‬

‭1.‬ ‭A higher-level generative program that generates different types of concepts.‬
‭2.‬ ‭A lower-level probabilistic concept, which are themselves programs that can be run to‬

‭generate tokens of a concept.‬

‭Here, describing learning as rapid model building refers to the fact that BPL constructs‬
‭generative models that produce novel concepts, which generates probabilistic tokens of such‬
‭concepts. The below is a visual turing test, some data are generated by humans and some by‬
‭BPL.‬

‭Compositionality‬
‭Compositionality is the classic idea that‬‭new representations‬‭can be constructed through‬
‭the combination of primitive elements‬‭. In computer‬‭programming, primitive functions can be‬



‭combined to create new functions, and these new functions can be further combined to create‬
‭even more complex functions. This function hierarchy provides an efficient description of‬
‭higher-level functions, such as a hierarchy of parts for describing complex objects or scenes.‬

‭-‬ ‭Parts can themselves be composed of sub-parts, forming a “partonomy” of part-whole‬
‭relationships.‬

‭-‬ ‭The parts and relations can be shared and re-used from existing related concepts.‬
‭-‬ ‭Because the parts and relations are themselves a product of previous learning, their‬

‭facilitation of the construction of new models is also an example of learning-to-learn.‬

‭Compositionality is also at the core of productivity:‬‭an infinite number of representations can‬
‭be constructed from a finite set of primitives‬‭, just‬‭as the mind can think an infinite number of‬
‭thoughts, utter or understand an infinite number of sentences, or learn new concepts from a‬
‭seemingly infinite space of possibilities.‬

‭-‬ ‭This solves the infinite space exploration problem?‬
‭-‬ ‭object-oriented reinforcement learning & other RL methods for compositional learning.‬

‭Compositionality is also central to the construction of other types of symbolic concepts beyond‬
‭characters, where new spoken words can be created through a novel combination of phonemes‬
‭or a new gesture or dance move can be created through a combina- tion of more primitive body‬
‭movements.‬

‭Casuality‬
‭Causal models represent hypothetical real-world processes that produce the perceptual‬
‭observations‬‭. Causality has been influential in theories‬‭of perception. “Analysis-by-synthesis”‬
‭theories of perception maintain that sensory data can be more richly represented by modeling‬
‭the process that generated it. Relating data to their causal source provides strong priors for‬
‭perception and learning, as well as a richer basis for generalizing in new ways and to new tasks.‬

‭In control and reinforcement learning, causal models represent the‬‭structure of the‬
‭environment‬‭, such as modeling state-to-state transitions‬‭or action/state-to-state transitions‬
‭(somewhat model-based ideas).‬

‭-‬ ‭Although a generative model describes a process for generating data, or at least assigns‬
‭a probability distribution over possible data points, this generative process may not‬
‭resemble how the data are produced in the real world.‬

‭-‬ ‭Causality refers to the‬‭subclass of generative models‬‭that resemble, at an abstract‬
‭level, how the data are actually generated‬‭.‬

‭-‬ ‭Deep Belief Networks & VAE are on one spectrum of GAN while BPL is on the other‬
‭because BPL resembles more to the actual hand-written process.‬

‭-‬ ‭For the BPL of learning handwritten characters, causality is operationalized by‬
‭treating concepts as motor programs, or abstract causal descriptions of how to‬
‭produce examples of the concept, rather than concrete configurations of specific‬
‭muscles.‬



‭Learning-to-Learn‬
‭When humans or machines make inferences that go far beyond the data, strong prior‬
‭knowledge (or inductive biases or constraints) must be making up the difference‬‭. One‬
‭way people acquire this prior knowledge is through “‬‭learning-to-learn‬‭”, a term introduced by‬
‭Harlow (1949) and closely related to the machine learning notions of “‬‭transfer learning‬‭”,‬
‭“‬‭multitask learning‬‭”, and “‬‭representation learning‬‭”.‬‭These terms refer to ways that learning a‬
‭new task or a new concept can be accelerated through previous or parallel learning of other‬
‭related tasks or other related concepts.‬

‭The strong priors, constraints, or inductive bias needed to learn a particular task quickly are‬
‭often‬‭shared to some extent with other related tasks‬‭.‬‭A range of mechanisms have been‬
‭developed to adapt the learner’s inductive bias as they learn specific tasks and then apply these‬
‭inductive biases to new tasks.‬

‭-‬ ‭BPL transfers readily to new concepts because it learns about object parts, sub-parts,‬
‭and relations, capturing learning about what each concept is like and what concepts are‬
‭like in general.‬

‭-‬ ‭It is crucial that learning-to-learn occurs at multiple levels of the hierarchical generative‬
‭process.‬‭Previously learned primitive actions and‬‭larger generative pieces can be‬
‭re-used and re-combined to define new generative models for new characters‬‭.‬
‭Further transfer occurs by learning about the typical levels of variability within a typical‬
‭generative model. This provides knowledge about how far and in what ways to‬
‭generalize when we have seen only one example of a new character, which on its own‬
‭could not possibly carry any information about variance.‬

‭-‬ ‭Deep reinforcement learning systems for playing Atari games have had some impressive‬
‭successes in transfer learning. For example, the “actor-mimic” algorithm that first learns‬
‭13 Atari games by watching an expert network play and trying to‬‭mimic the expert‬
‭network action selection‬‭and/or internal states.‬

‭Thinking Fast‬
‭The‬‭combination of rich models with efficient inference‬‭suggests another way psychology‬
‭and neuroscience may usefully inform AI. It also suggests an additional way to build on the‬
‭successes of deep learning, where‬‭efficient inference‬‭and scalable learning‬‭are important‬
‭strengths of the approach.‬‭There needs to be a way‬‭to resolve the conflict between fast‬
‭inference and structured representations, a collaboration.‬

‭Approximate Inference From Structured Models: AlphaGo‬
‭Computing a probability distribution over an entire space of programs is usually intractable, and‬
‭often‬‭even finding a single high-probability program‬‭poses an intractable search problem‬‭.‬
‭In contrast, gradient-based learning is very fast even in a vast space.‬‭A complete account of‬
‭learning and inference must explain how the brain does so much with limited‬
‭computational resources‬‭.‬



‭Looking at pure probabilistic inference, popular algorithms for approximate inference in‬
‭probabilistic machine learning have been proposed as‬‭psychological models‬‭. Most‬
‭prominently, it has been proposed that humans can approximate Bayesian inference using‬
‭Monte Carlo methods‬‭(stochastically sample the space‬‭of possible hypotheses and evaluate‬
‭these samples according to their consistency with the data and prior knowledge). We are‬
‭beginning to understand how such methods could be implemented in neural circuits.‬

‭-‬ ‭Although Monte Carlo methods are powerful and come with asymptotic guarantees, it is‬
‭challenging to make them work on complex problems like program induction and theory‬
‭learning,‬‭and it is unlikely that they are the only‬‭mechanism we use to process‬‭.‬

‭-‬ ‭When the hypothesis space is vast and only a few hypotheses are consistent with the‬
‭data, how can good models be discovered without exhaustive search (the full‬
‭combinatorial complexity)?‬

‭-‬ ‭Humans use‬‭high-level abstract features of a domain‬‭to‬‭guide hypothesis selection‬‭,‬
‭by reasoning about distributional properties, dynamical properties, or monotonic‬
‭relationships between causes and effects. Is there some guidance like that for the‬
‭machines?‬

‭How might efficient mappings from questions to a plausible subset of answers be‬
‭learned‬‭and making inference a smaller problem to‬‭tackle?‬

‭-‬ ‭One approach is to amortize probabilistic inference computations into an efficient‬
‭feed-forward mapping (gradually lower the computation cost), somewhat a‬‭learning to‬
‭do inference‬‭(independent from the ideas of learning‬‭as model building).‬

‭-‬ ‭These feed-forward mappings can be learned in various ways, for example, using paired‬
‭generative/recognition networks and variational optimization, or nearest-neighbor density‬
‭estimation.‬

‭This trend is an avenue of potential i‬‭ntegration of deep learning models with probabilistic‬
‭models and probabilistic programming‬‭: training neural networks to help perform probabilistic‬
‭inference in a generative model or a probabilistic program. Another avenue for potential‬
‭integration is through‬‭differentiable programming‬‭, by ensuring that the program-like‬
‭hypotheses are differentiable and thus learnable via gradient descent.‬

‭-‬ ‭Neural networks with “working memories” that augment the shorter-term memory‬
‭provided by unit activation and the longer-term memory provided by the connection‬
‭weights.‬

‭-‬ ‭These developments are also part of a broader trend toward “differentiable‬
‭programming,” the incorporation of classic data structures, such as random access‬
‭memory, stacks, and queues, into gradient-based learning systems such as Neural‬
‭Turing Machine (NTM) and Differentiable Neural Computer (DNC).‬

‭Gradual Model-free to Model-based‬
‭Model-based planning is an essential ingredient of human intelligence,‬‭enabling flexible‬
‭adaptation to new tasks and goals‬‭; it is where all‬‭of the rich model-building abilities discussed‬
‭in the previous sections earn their value as guides to action.‬



‭Once the learned skills become “‬‭habitized‬‭”, a shift from model-based to model-free control can‬
‭happen. This shift may arise from a rational arbitration between learning systems to‬‭balance‬
‭the trade-off between flexibility and speed‬‭.‬

‭-‬ ‭plans can be amortized into cached values by allowing the model-based system to‬
‭simulate training data for the model-free system (Sutton 1990). This process might occur‬
‭offline (e.g., in dreaming or quiet wakefulness), suggesting‬‭a form of consolidation in‬
‭reinforcement learning‬‭.‬

‭-‬ ‭Consistent with the idea of cooperation between learning systems in the human brain, a‬
‭recent experiment demonstrated that model-based behavior becomes automatic over‬
‭the course of training. Thus,‬‭a marriage of flexibility and efficiency might be‬
‭achievable if we use the human reinforcement learning systems as guidance‬‭.‬

‭Example: AlphaGo‬
‭This is AlphaGo, a really smart system, but it is not robust to the face of variants of the game‬
‭Go.‬‭Does there exist a way in which we can reuse some of the trees that have been explored, to‬
‭find some robust representation of the game Go that can be carried over even in new variants of‬
‭the game Go to explore more parts of the new tree.‬

‭Humans understand these variants and adapt to them because they‬‭explicitly represent Go as‬
‭a game‬‭, with a goal to beat an adversary who is playing to achieve the same goal he or she is,‬
‭governed by rules about how stones can be placed on a board and how board positions are‬



‭scored.‬‭Humans represent their strategies as a response to these constraints, such that if‬
‭the game changes, they can begin to adjust their strategies accordingly‬‭.‬

‭-‬ ‭Is it a further constraint solving problem with different constraints?‬

‭Go presents compelling challenges for AI beyond matching world-class human performance, in‬
‭trying to‬‭match human levels of understanding and generalization, based on the same‬
‭kinds and amounts of data, explicit instructions, and opportunities for social learning‬
‭afforded to people‬‭. In learning to play Go as quickly and as flexibly as they do, people are‬
‭drawing on most of the cognitive ingredients this article has laid out. They are learning-to-learn‬
‭with compositional knowledge. They are using their core intuitive psychology and aspects of‬
‭their intuitive physics (spatial and object representations). And like AlphaGo, they are also‬
‭integrating model-free pattern recognition with model-based search.‬


