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The task of cognitive computational neuroscience is to find the right level, with enough fidelity
to biology to preserve the essential mechanisms, but abstract enough to discard details not
required for cognitive function, which reproduces the trajectory from actively sensed input,
through internal representations realized in neural processes, to complex goal-directed
behaviors. Abstraction is central to reveal what details matter and what approaches
closer to the truth.

Imagination may be a limitation, what we can research about the brain may be limited to what
we can come up with, but natural mechanisms are not necessarily bound within these
constraints: neural selectivity can often rely on more complex features that only imperfectly map
onto human-interpretable categories. Inorder to give a complete picture of how cognition
emerges, brain science needs interpretable computational models that go beyond the limits of
human-interpretable labels for neural activity, that are applicable in naturalistic settings by
being grounded in sensory data and that tie together multiple levels of explanation. This new
approach is termed to be ‘neuroconnectionism’ — a cohesive large-scale research programme
centered around ANNs as a computational language for expressing falsifiable theories and
hypotheses about multi leveled brain computation.

Neuroconnectionism has already been successfully applied
in a wide variety of neuroscientific settings, including vision,
audition, semantics, language, reading, decision-making,
attention, memory, game playing, motor control and the
formation and coding principles of brain areas.

The search for inhabitable exoplanets means looking for
planets orbiting at the ‘right’ distance from their stars to have
liquid water. If they are too close, temperatures are too high
and water evaporates. If they are too far, temperatures are
too low and water freezes. The temperature has to be just
right, as in the Goldilocks fairytale. Analogously, models that
are too close to the biological brain fall outside the
Goldilocks zone because they have too much biological
detail and cannot be run or trained at scale to perform
complex cognitive tasks from sensory grounded evidence.
Models that are too abstract also fall outside the Goldilocks
zone as they can neither be easily linked to biology, nor be
grounded in sensory input. As unnecessary detail

Symbolic models . .
complicates understanding, models need to focus on
Boxandarrow incorporating the biological elements crucial for explaining

brain computation at an appropriate level of abstraction.
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Lakatosian Research Program

The neuroconnectionist research program is built around the Laktosian perspective of scientific
philosophy, which differs from the mainstream idea that people used to believe what science is.
It forms the core of belief in the center of the program and expands auxiliary hypotheses that
can be tested to the side of it.

Popperian: theories are rejected Laktosian: give what we found some
when they are falsified in tests was confidence. It is about our belief of how the world
dominant: works, don’t reject it unless when we have to:

- IfT, then O - IfT,and A1, and, ..., and An, then O

- NotO, hencenot T - Not O, hence not T, or not A1, or not, ...,
Where T is the theory and O is the or not An
observation where (A1, ..., An) are auxiliary hypothesis

Argues that science would not work like the
Popperian idea in practice and could not work
like that in principle. It is never a single
hypothesis, but a whole collection of hypotheses
that generates predictions, any one of which
might be at fault if the prediction is not
vindicated. The (not O) may not come from the
wrong T, but the wrong A1 to An that surrounds
T.

1. Belief at the outer circle describes
localized observable facts and the ones
in the center describe some sense of
generalized belief.

2. Atheory is rejected not as the result of a
direct conflict with the evidence, but
because the attempt to preserve the
core principles becomes so
cumbersome that they cease to form a
productive working hypothesis for
continued testing and the discovery of
new insights.

3. When such conditions happens, the
research paradigm need to be changed
and a complete overhaul of theories
and the language used to describe the
world would need to be changed
(Kuhnian scientific paradigm shift).

In astronomy, deviations in planetary trajectories from the smooth ellipses predicted by
Newtonian mechanics were observed. Instead of rejecting Newtonian laws owing to these



challenging empirical data, scientists assumed the correctness of the laws and tested auxiliary
hypotheses (such as the presence of an unseen planet) that might explain the orbital deviations.
Hence, a belt claim was falsified (the number of planets in the solar system) but the core was
not abandoned (Newtonian mechanics). Then in the twentieth century, evidence accumulated
against Newtonian celestial mechanics that could not be solved assuming the correctness of the
laws, which led to its rejection and the development of general relativity, a novel progressive
core that changed the way the universe is thought about and led to great discoveries.
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Core of Neuroconnectionist

1. Accept the fact that the brain is complex and brain science requires complex, distributed
and iterative models to reveal the true mechanism and theory of how the brain operates.
Analytical solutions would not exist, complex systems need complex tools to map.

2. ANNSs offer a highly suitable computational language: sufficiently abstract to be
computationally tractable and reproduce cognitive functions, while still being close
enough to biology to relate to, implement and test neuroscientific hypotheses.



Belt of Neuroconnectionist
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1. Architecture + Data + Objectives + Learning Rules

a.
b.

Random reservoirs, convolutional layers, inductive biases (memory candidate)
Supervised (classification and scene captioning), unsupervised (contrastive
learning, predictive coding, image generation, temporal stability, and energy
efficiency), and behavioral reward

Backward propagation, Hebbian learning, predictive coding, self-organizing
maps.

2. Behavior + Neuronal + In Silico Physiology + Developmental Agreement

a.

e.

Representational Similarity Analysis (RSA) looks at the populational
representational geometric similarity.
Use linear combination with activations to predict neuronal activity.

3. Math & Neuroscience may be somewhat connected, providing mathematical theoretical
insights to how the brain might be working.

a.

As ANNSs are heavily overparameterized and learn non-convex loss functions,
precise mathematical tools are required to better understand the underlying
computations and learning dynamics (deep mathematics). Insights from deep
mathematics (double descent, neural tangent kernels) are of great importance for
understanding complex neural processes, as the brain, too, is highly
overparameterized.

Goldilocks Zone & Problems Makes Developments

ANN s live in the Goldilocks zone of biological abstraction, striking the required balance
between biological realism and algorithmic clarity, providing a level of abstraction much
closer to biology but abstract enough to model behavior. They can be trained to perform
high-level cognitive tasks, while they simultaneously exhibit biological links in terms of their



computational structure and in terms of predicting neural data across various levels — from
firing rates of single cells, to population codes and on to behavior.

Individual elements of the belt are important, but a more central aim, when taking a Lakatosian
perspective, is an evaluation of longitudinal developments (both theoretical and empirical),
which determine whether a research programme is progressive or degenerative. New
hypotheses can be derived and existing hypotheses can be corroborated, altered and rejected
so that the belt of a research programme is subject to change.

An individual belt hypothesis that is rejected does not refute the core assumptions upon
which a research programme is built, but rather provides an important datapoint for
future developments. According to this Lakatosian view, the overarching question becomes:
How does the neuroconnectionism research programme fare in terms of productivity, discussing
whether neuroconnectionism generates new insights, and how well it addresses existing
challenges.

Historical development in VNL that have been expanding the belt:

1. (A,B) Neocognitron was derived from seminal findings about simple and complex visual
system cells by Hubel and Wiesel. It learned and recognized increasingly abstract visual
patterns through mechanisms that were similar to convolutions. HMAX is a more
powerful model and was shown to match well to human psychophysical data on animacy
detection well but did not align well with broad activity patterns observed in IT, providing
disconfirmatory evidence and weakening the belt item.

2. (C,D,E,F) CNNs layer activities match neural activity patterns along the primate ventral
visual stream.

a. First time that a single image-computable and functional object recognition
network was able to match activity patterns across the ventral visual system.

b. They have susceptibility to adversarial attacks and the amounts of labeled
training data they required, which were shown to exhibit several important
differences with biological vision.

c. Have similar layer activities to the dorsal visual stream.

d. Error behavior during image alterations diverges between humans and CNNs.

e. Feedforward CNNs embodied too simple mechanisms to cover neural dynamic
observations beyond coarse rate coding.

3. (G) Dynamic transformations during visual processing can be captured if recurrence is
added to ANNSs.

4. (H,I) Activity across the dorsal visual stream during game playing matches activity in
deep reinforcement learning networks, which implement a sensory—motor loop for the
same game playing tasks. Unsupervised learning can rival supervised learning in
representational agreement with brain data, which solved the challenge that too many
labeled examples were needed for training.

5. (J) Future directions: Attention mechanisms, semantic objectives and end-to-end
learning in which networks are trained directly to match neural activity are recent
developments in ANNSs.
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the primate ventral visual
stream

CNNs and dorsal
stream
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HMAX and IT

The neocognitron-based
HMAX model mimics
primate ventral stream
receptive field sizes and
accounts for human
rapid animacy
categorization behaviour

HMAX and IT

IT activity patterns do
not align well with
HMAX unit activity
patterns

Data raqulramanta
Unlike biological
visual systems, ANNs
need large amounts
of labelled training
examples

Neural dynamics
Feedforward CNNs
cannot account for

neural dynamics
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Unlike biological visual
systems, ANNs are
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image perturbations not
visible to humans

Error behaviour
ANNSs show different
error behaviours from
humans for degraded
images
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Deep reinforcement
learning is proposed
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