
Q Learning Algorithm

May 22, 2024

1 Q-Learning Algorithm
The algorithm iteself is not so much hard to implement, but the essence (both mathamatcially
derived & intuition) took 20 years of development. Understanding Q-Leaning is crucial because
this is the key to essentially most of teh search side of reiforcement learning, which is again also
heavily used even framing reinforcement learning problem (specifically policy) as an optimization
problem. reinforcement learning is both Search & Optimization. Notice that both
search and optimization is already an abstraction on the real problem, one frame it in
a infinite tree’s scope, one frame it in a landscape’s scope.

1. Formal proofs fcome from mathamatical formulation of the complex space and intuitive ideas
come from the coed itself.

2. When interpreting RL, first you need to see what the goal is, then you need to think about
what is it mathamatically doing and how does it root back to bellman update.

Mathematical speaking:

Remember that all Q-learning idea is rooted back to TD with V(s) given pi, which is all
the way rooted back to Bellman expected/max update. We know that bellman max update or
expected update can be deem as walking on the space of 𝑅𝑛 where the vector ⃗𝑉 stores one possbile
reality of the MDP, we know that it is a contraction mapping and the max update converges to a
single reality, the singularity, that have all the best state. Now moving to TD update, it can also be
deemed as walking on the 𝑅𝑛 space but just incrementally updating each entries by one instance
learning, it is still a contractile mapping, same can be applied to Q-learning with max operator,
maximization garanteed at convergence.

𝑉 (𝑠0) = 𝑅(𝑠0) + 𝛾 ∑
𝑠′

𝑃(𝑠′|𝑠0, 𝜋(𝑠0))𝑉 (𝑠′)

𝑉 (𝑠1) = 𝑅(𝑠1) + 𝛾 ∑
𝑠′

𝑃(𝑠′|𝑠1, 𝜋(𝑠1))𝑉 (𝑠′)

⋮
𝑉 (𝑠𝑛) = 𝑅(𝑠𝑛) + 𝛾 ∑

𝑠′
𝑃(𝑠′|𝑠𝑛, 𝜋(𝑠𝑛))𝑉 (𝑠′)

Non-mathematical derivation wise:

Remember back in Bellman update, minimum requirement max next one step, max all step. In
RL, you have to visit the same state-action multiple times, to spend a bit more time, to learn from
it.

1

• Bellman Max Update: always choose action that maximize the current state value when
looking at the recurrence all next state expectation, thus maximizing.

– Bellman Expected Update:

𝑉 𝜋(𝑠) ← 𝑅(𝑠) + 𝛾 ∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉 (𝑠′)

– Bellman Max Update:

𝑉 (𝑠) ← 𝑅(𝑠) + 𝛾(𝑚𝑎𝑥𝑎∈𝐴(𝑠) ∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉 (𝑠′))

• Temporal Difference Evaluation: modifying bellman update with a sampling and incremen-
tally learning flavor, update without perfect knowledge

– 𝑉 𝑛𝑒𝑤 = current 𝑉 𝑜𝑙𝑑 + (new one instance using 𝑉 𝑜𝑙𝑑 - current 𝑉 𝑜𝑙𝑑)

– Incremental Update:
𝜇𝑘 ← 𝜇𝑘−1 + 𝛼𝑘(𝑥𝑘 − 𝜇𝑘−1)

– TD Evaluation:

𝑉 𝜋(𝑠) ← 𝑉 𝜋(𝑠) + 𝛼(𝑅(𝑠) + 𝛾𝑉 𝜋(𝑠′) − 𝑉 𝜋(𝑠))

• Q-Learning: the goal is to have a Q lookup table that tells you at a given state, what is
the best globally, then we can use epslon greedy policy. It is a one instance learning looking
at the one instance of next (state-action) pair from 𝑄𝑜𝑙𝑑. Since we want to learn about the
best/optimal path, we don’t want to update towards a wrong understanding, especially when
this (state-action) pair actually does have high rewards. To avoid the problem of agent just
sampling a bad rollout from the environment and treat it as the understanding of the state,
we always takes the max operator among all Q in memory to find the best reward of a given
(state-action) pair.

1. Rooted in MDP’s mathamatical structure, current understanding can be update by a
new instance (current reward + current look up table’s next value after this action
transition), this constitutes a new instance understanding and then compare with all
older understanding of the current state to find the max of them al. Remember this
unfolds recurrently.

reward + self.DISCOUNT * max_next_q - self.Q_values[state][action]

2. A natural question would be that, during initialization, the recurrence sample system
may not have enough sample yet, so the next_state’s value, which is then recurrent to
another state and so on, may not have value to it yet. The global state is istantiated
to be random, the value knows is just all random, the conceptual global vector in
vector space is randomly initiated. As learning goes on, because of the learning rate,
the initial starting point doesn’t really matter and correctness converges

3. This alo illustrates that RL agent need to really visit one state multiple times to actually
learn and understand the state and the bigger global state. There will be more of a
“memory” in knowing what is more optimal path to take.

2

– Q’s Perspective on Bellman Update:

𝑉 (𝑠) = 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

𝑄(𝑠, 𝑎) ← ∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)(𝑅(𝑠) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′))

– Q-Learning:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑅(𝑠) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

[]: def Q_run(self, num_simulation, tester=False, epsilon=0.4):
'''running Q learning'''

Perform num_simulation rounds of simulations in each cycle of the overall␣
↪game loop

for simulation in range(num_simulation):

Do not modify the following three lines
if tester:

self.tester_print(simulation, num_simulation, "Q")

reset the game & go to current state
self.simulator.reset()
state = self.simulator.state

while not self.simulator.game_over():
choose an action based on the epsilon-greedy policy
action = self.pick_action(state, epsilon)

get new random variable observation, one new instance from this␣
↪state and action pair

next_state, reward = self.make_one_transition(action)

If next_state is None, it means the game is over
if next_state is None:

max_next_q = 0 # no future rewards if the game is over
else:

max_next_q = max(self.Q_values[next_state]) # global max in␣
↪memory, different from SARSA, look at all Q-values and select

Q-Learning update rule, new state discovered, initialize it with␣
↪nothing and value with nothing

if state not in self.N_Q:
self.N_Q[state] = [0, 0] # initialize it with nothing
self.Q_values[state] = [0.0, 0.0] # initialize value with␣

↪nothing

3

self.N_Q[state][action] += 1 # this state-action pair visited once␣
↪more

#
alpha = self.alpha(self.N_Q[state][action])
self.Q_values[state][action] += alpha * (reward + self.DISCOUNT *␣

↪max_next_q - self.Q_values[state][action])

move to the next state & recursively explore the tree
state = next_state if next_state is not None else state

def pick_action(self, s, epsilon):
'''epsolon greedy algorithm'''
if random.random() < epsilon: # Explore: choose a random action

return random.choice([HIT, STAND])
else: # Exploit: choose the best action based on current Q-values

if self.Q_values[s][HIT] > self.Q_values[s][STAND]:
return HIT

else:
return STAND

Start with good guesses explores help?

4

	Q-Learning Algorithm

