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Aims and Setup

Aim to inject diverse fundamental embodied knowledge and skills into pretrained LMs,
while retaining the models’ generality. We introduce a novel training paradigm for LMs –
fine- tuning with Embodied Experiences from World Models (E2WM). Here,
world models are embodied simulators that emulate physical interactions in real-world
environments (e.g., VirtualHome).

Aim to consider a diverse range of fundamental knowledge and skills for embodied tasks,
including tracking objects, planning to complete given goals, recognizing other
agents’ behaviors, etc. To this end, the paper introduce two ways to collect embodied
experiences from world models that give rise to the desired knowledge and skills:

1. Goal-oriented planning: aims to gather experiences associated with planning
and goal-oriented agent behaviors.

2. Random exploration: focuses on accumulating experiences that involve object
and world state tracking.

Crucially, to finetune LMs on the collected embodied experiences while retaining their
original general knowledge and capabilities, the classical Elastic Weight Consolida-
tion (EWC) is introduced into the training paradigm. By regularizing the finetuning
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loss, EWC aims to preserve the important LM parameters from pretraining. EWC is
substantially more effective than the popular KL regularization.

Also uses efficient low-rank updates by harmonizing the recent Low-Rank Adaptation
(LoRA) with the EWC regularizer. This results in the new EWC-LoRA update rule
that greatly reduces training costs and makes our E2WM paradigm accessible to cheap
hardware (GPUs).

Approach

A world model simulator (e.g., VirtualHome) is used to generate embodied experiences
for fine-tuning language models (LMs). These experiences provide information about
object permanence, goal planning, and tracking, which are challenging to derive from
text alone.

Monte Carlo Tree Search (MCTS)

In goal-oriented planning, the Monte Carlo Tree Search (MCTS) algorithm is used to
explore the possible actions an agent can take to achieve a predefined goal. The reward
structure is defined as follows:

• At each time step, if a goal predicate is fulfilled, the agent receives a reward of +2.

• To avoid repeating the same actions, achieved predicates are removed from the goal
set.

• A penalty of −0.1 is given for irrelevant actions to discourage unnecessary steps.

Elastic Weight Consolidation (EWC)

To preserve the general knowledge of the pretrained LM while fine-tuning on embodied
tasks, the authors use Elastic Weight Consolidation (EWC) for regularization. The loss
function with EWC is:

L(θ) = LV (θ) + λ
∑
i

Fi,i(θi − θ∗i )
2

where:

• LV (θ) is the loss for the fine-tuning task,

• Fi,i is the Fisher information for parameter θi,

• θ∗i is the pretrained model parameter,

• λ is a regularization coefficient.

The Fisher information matrix F is computed as:

Fi,i =
1

N

N∑
j=1

(
∂L

(j)
U

∂θ∗i

)2
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where LU is the loss for the original pretraining task and N is the number of data samples.

Low-Rank Adaptation (LoRA)

To reduce the memory and computational cost of fine-tuning, the authors combine EWC
with Low-Rank Adaptation (LoRA). The weight matrix W is decomposed as:

W = W ∗ +BA

where W ∗ is the frozen pretrained weight matrix, and B ∈ Rr×k, A ∈ Rk×d are two
low-rank matrices, with k ≪ min(r, d).

The loss function with EWC-LoRA becomes:

L(θ) = LV (θ) + λ
∑
i

Fi,ih
2
i

where hi = θi − θ∗i is the difference between the adapted and original weights, now
represented in low-rank form through the matrices A and B.

Task-Specific Learning

The collected experiences are used to fine-tune the language model on tasks such as
plan generation, activity recognition, counting, and object tracking. The overall loss for
multi-task learning is defined as:

LV =
∑
v∈V

αv

M∑
m=1

logP (ym|y<m, x)

where:

• V is the set of tasks,

• αv is the weight for task v,

• x is the input (e.g., the initial condition in plan generation),

• y = {y1, . . . , yM} is the stepwise action sequence or the output label.
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