
DSC 190 Machine Learning with Few Labels

EM algorithm is an construct and this note is designed for deriving an example o using
EM-algorithm to better understand how it works.

EM Algorithm For Binomial Mixture Model

Given two coins with unknown probabilities of heads θ1 and θ2 respectively, the first coin
is chosen with probability π1 and the second one with probability 1 − π1. The chosen coin
is flipped once, and the outcome is 0 or 1. Performing this random experiment for N trials
independently, the outcomes are recorded as dataset X = {xi}Ni=1.

(a) Let’s understand from a probabilistic perspective if we want to know how a single
random variable of work under this setting by writing down the expression for the
log-likelihood log p(X|θ1, θ2, π1).

Solution

For the probability of observing a single observation xi from the random variable
of X, the likelihood can be expressed as the probability of seeing π1 with head
θ1 plus the probability of seeing π2, or just (1− π1), with head θ2:

p(xi | θ1, θ2, π1) = π1p(xi | θ1) + (1− π1)p(xi | θ2)

And the probability of a single i random variable follows a binomial distribution,
which is:

p(xi | θk) = θxi
k (1− θk)

1−xi

Combining together, for N independent trials, the likelihood of the dataset X =
{xi}Ni=1 is:

p(X | θ1, θ2, π1) =
N∏
i=1

[
π1θ

xi
1 (1− θ1)

1−xi + (1− π1)θ
xi
2 (1− θ2)

1−xi
]

Taking the logarithm:

log p(X | θ1, θ2, π1) =
N∑
i=1

log
[
π1θ

xi
1 (1− θ1)

1−xi + (1− π1)θ
xi
2 (1− θ2)

1−xi
]

This is nice and easy to solve, but we will make it complicated.
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Next, we introduce the latent variable for the EM algorithm. Let zi = (z1i, z2i) be an
indicator vector for each observation xi, such that zki = 1 if the k-th coin is chosen,
and 0 otherwise, k = {1, 2}. For the dataset, we have Z = {zi}Ni=1.

(b) Write down the expression for the log-likelihood log p(X,Z|θ1, θ2, π1).

Solution

Notice that for this question, there is a few ”dimension”, there is the prob-
ability of head, the probability of seeing coin 1 or coin 2, and there is the
variable of seeing what the kth coin is. So we are making this problem of
talking about just one random variable of observing xi from X into a chain of
random variable of observing xi from X given that we are looking at zki = 1 trial.

To incorporate the latent variable Z = {zi}Ni=1, where zi = (z1i, z2i) is an indica-
tor vector such that zki = 1 if the k-th coin is chosen and 0 otherwise (k ∈ {1, 2}),
we need to enumerate over all the possible combination between Z and X. Fur-
thermore, zki need to serve as an indicator of whether the function takes value at
all for the ith Z latent variable. We can utilize properties of exponential where
if zki = 1, the function contributes and if zki = 0, then the function takes 1 and
does not contribute. This can be written as.

p(X,Z | θ1, θ2, π1) =
N∏
i=1

2∏
k=1

[
πkθ

xi
k (1− θk)

1−xi
]zki

We can take the log-likelihood by the following:

log p(X,Z | θ1, θ2, π1) =
N∑
i=1

2∑
k=1

zki
[
log πk + xi log θk + (1− xi) log(1− θk)

]
Here, πk represents the prior probability of selecting the k-th coin (or just in
general how likely it is to select the kth coin (not in terms of the chain of trial
but which number of coin is selected)). This whole expression can be deemed as
taking the expectation with regarding to the latent distribution of z. However,
this problem becomes intractable, which is why we need to use EM to solve it.

Remember that in the most generalized version of EM, we have an hidden Z
distribution that we don’t know, we assume that our data distribution X depends on
this hidden distribution of Z. Since we don’t know about this hidden, we can’t just
maximize this partial log-likelihood directly (problem becomes intractable), which is
why we want to infer what such Z distribution is (E-step), then maximize (M-step)
it.

(a) Expect an q (expected posterior) distribution from what we know in our data.

(b) Maximize under the assumption that our q distribution is correct.
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(c) E-step: Let θt−1
1 , θt−1

2 , πt−1
1 be the parameter estimation given by the t − 1 iteration

of the EM algorithm. Derive p(zki = 1|xi, θ
t−1
1 , θt−1

2 , πt−1
1 ), k = {1, 2}.

Solution

In the E-step (usually the hard part), we want to derive the posterior prob-
ability (given all observation, how likely it is for coin k to be selected at trial
i). We want to know the probability of the latent being 1 (number kth coin get-
ting chosen) given the random variable (observation), and previous probability
of coin-1-head, coin-2-head, and coin-1-showing. We can decompose the previous
notion by using Bayes’ Rule:

p(zki = 1 | xi, θ
(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) =

p(zki = 1, xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 )

p(xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 )

We can derive the numerator by looking at the joint distribution (seeing
kth coin with the observation) through using prior probabilistic distribution of

seeing the kth coin in the previous trial (π
(t−1)
k ) and the likelihood (p(xi | θ(t−1)

k ))
derived from the observation of the previous trial:

p(zki = 1, xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) = π

(t−1)
k · p(xi | θ(t−1)

k )

where the likelihood is simply expressed as a Bernoulli distribution (since we are
talking about the probability of seeing certain variable in a sequence of binary
decisions):

p(xi | θ(t−1)
k ) = (θ

(t−1)
k )xi(1− θ

(t−1)
k )1−xi

Notice that this expression is highly alike the probability distribution that we
derived earlier, just that this is a particular instance in the chain now instead of
the general expression we described earlier.

p(X,Z | θ1, θ2, π1) =
N∏
i=1

2∏
k=1

[
πkθ

xi
k (1− θk)

1−xi
]zki

Continues on next page...
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Solution

Continues from previous page...
Now we have the joint distribution, we need to focus on the denominator, the
marginal probability p(xi | θ(t−1)

1 , θ
(t−1)
2 , π

(t−1)
1 ), which is the total probabil-

ity of observing xi (which we have derived the general expression earlier in the
joint distribution already):

p(xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) =

2∑
k=1

p(zki = 1, xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 )

Notice that this inner component is something that we have derived before, which
is:

p(xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) =

2∑
k=1

π
(t−1)
k · p(xi | θ(t−1)

k )

This is sort of summing all the prior probabilistic distribution of seeing coin k
with a likelihood weighting term.

p(xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) =

2∑
k=1

π
(t−1)
k · p(xi | θ(t−1)

k ).

Specifically for k = 2 condition :

p(xi | θ(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) =

[
(π

(t−1)
1 ) · p(xi | θ(t−1)

1 )
]
+
[
(1− π

(t−1)
1 ) · p(xi | θ(t−1)

2 )
]

Substituting the above expressions we get with marginal distribution and the
joint distribution, we would get the following. For k ∈ {1, 2}, the posterior
probability is:

p(zki = 1 | xi, θ
(t−1)
1 , θ

(t−1)
2 , π

(t−1)
1 ) =

π
(t−1)
k · (θ(t−1)

k )xi(1− θ
(t−1)
k )1−xi∑2

j=1 π
(t−1)
j · (θ(t−1)

j )xi(1− θ
(t−1)
j )1−xi

and we should construct our E-step based on this expression above.

4



DSC 190 Machine Learning with Few Labels

(d) M-step: Show that

πt
1 =

N1

N
,

where N1 is the number of trials the first coin is chosen in the t-th iteration of the EM
algorithm. Notice that πt

1 is essentially the probability of observing coin 1 at trial t. We
essentially want to conduct an MLE on the likelihood function of Q(π1, θ1, θ2)
(adjusting variables such that we get teh maximum probability of observing π1).

Solution

To update π1 in the M-step, we maximize the expected complete data log-
likelihood. The complete data log-likelihood is given by (notice that this is
sort of taking the expectation with regard to the latent distribution):

log p(X,Z | π1, θ1, θ2) =
N∑
i=1

2∑
k=1

zki [log πk + xi log θk + (1− xi) log(1− θk)] .

Or just that:

Q(π1, θ1, θ2) = Ezki [log p(X,Z | π1, θ1, θ2)]

Since the latent variables Z are not observed, we compute the expected complete
data log-likelihood over the posterior distribution of Z that we retrieved from
the E-step. The posterior probabilities are:

qki = p(zki = 1 | xi, π
t−1
1 , θt−1

1 , θt−1
2 )

where qki is our build-up expected value of zki. Taking the expectation under
our qki distribution, we replace zki with qki:

Q(π1, θ1, θ2) = Eqki [log p(X,Z | π1, θ1, θ2)]

Substituting the expectation of distribution qki into the complete data log-
likelihood:

Q(π1, θ1, θ2) = log p(X,Z | π1, θ1, θ2) =

N∑
i=1

2∑
k=1

qki [log πk + xi log θk + (1− xi) log(1− θk)]

This Q function represents the expected complete data log-likelihood, which
is what we usually maximized during the M-step to update the parameters
π1, θ1, θ2.
Continue on next page...
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Solution

Continue from previous page...
For the sake of this question, we need simplification. Again, we essentially
want to conduct an MLE on the likelihood function of Q(π1, θ1, θ2) (ad-
justing variables such that we get teh maximum probability of observing π1).
Simplifying Q(π1, θ1, θ2), we can separate the terms involving πk, θ1, and θ2
since we don’t care about the rest k coins.

Q(π1, θ1, θ2) =
N∑
i=1

[q1i log π1 + q2i log(1− π1)]

+
N∑
i=1

2∑
k=1

qki [xi log θk + (1− xi) log(1− θk)] .

Notice that we have separated out just the terms for only πq involved in it. So
we can write just Q(π1) since we only want to know about πt

1 (the probability of
seeing coin 1 at the tth iteration), we can throw away the rest of the terms since
we are not talking about any coins that is not 1 and nor are we talking about
head or tail probability:

Q(π1) =
N∑
i=1

q1i log π1 +
N∑
i=1

q2i log(1− π1),

Taking the derivative of Q(π1) with respect to π1:

∂Q

∂π1

=

∑N
i=1 q1i
π1

−
∑N

i=1 q2i
1− π1

Set ∂Q
∂π1

= 0:

π1

N∑
i=1

q2i = (1− π1)
N∑
i=1

q1i

Continues on next page...
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Solution

Continued from last page...
Since we only have two coins, we can use the fact that the expected number
of times that coin 2 would be chosen is the total number of chooses minus the
expected number of times that coin 1x is chosen:

∑N
i=1 q2i = N−

∑N
i=1 q1i. When

substituting, we get that:

π1(N −
N∑
i=1

q1i) = (1− π1)
N∑
i=1

q1i

Expand and collect terms:

π1N =
N∑
i=1

q1i

Solve for π1:

π1 =

∑N
i=1 q1i
N

Define N1 =
∑N

i=1 q1i, which is the expected number of trials where the first coin
is chosen (following problem definition), we would get that:

πt
1 =

N1

N

The proof is thus complete.
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