EM algorithm is an **construct** and this note is designed for deriving an example o using EM-algorithm to better understand how it works.

EM Algorithm For Binomial Mixture Model

Given two coins with unknown probabilities of heads θ_1 and θ_2 respectively, the first coin is chosen with probability π_1 and the second one with probability $1 - \pi_1$. The chosen coin is flipped once, and the outcome is 0 or 1. Performing this random experiment for N trials independently, the outcomes are recorded as dataset $X = \{x_i\}_{i=1}^N$.

(a) Let's understand from a probabilistic perspective if we want to know how a single random variable of work under this setting by writing down the expression for the log-likelihood log $p(X|\theta_1, \theta_2, \pi_1)$.

Solution

For the probability of observing a single observation x_i from the random variable of X, the likelihood can be expressed as the probability of seeing π_1 with head θ_1 plus the probability of seeing π_2 , or just $(1 - \pi_1)$, with head θ_2 :

$$p(x_i \mid \theta_1, \theta_2, \pi_1) = \pi_1 p(x_i \mid \theta_1) + (1 - \pi_1) p(x_i \mid \theta_2)$$

And the probability of a single i random variable follows a binomial distribution, which is:

$$p(x_i \mid \theta_k) = \theta_k^{x_i} (1 - \theta_k)^{1 - x}$$

Combining together, for N independent trials, the likelihood of the dataset $X = \{x_i\}_{i=1}^N$ is:

$$p(X \mid \theta_1, \theta_2, \pi_1) = \prod_{i=1}^{N} \left[\pi_1 \theta_1^{x_i} (1 - \theta_1)^{1 - x_i} + (1 - \pi_1) \theta_2^{x_i} (1 - \theta_2)^{1 - x_i} \right]$$

Taking the logarithm:

$$\log p(X \mid \theta_1, \theta_2, \pi_1) = \sum_{i=1}^N \log \left[\pi_1 \theta_1^{x_i} (1 - \theta_1)^{1 - x_i} + (1 - \pi_1) \theta_2^{x_i} (1 - \theta_2)^{1 - x_i} \right]$$

This is nice and easy to solve, but we will make it complicated.

Next, we introduce the latent variable for the EM algorithm. Let $z_i = (z_{1i}, z_{2i})$ be an indicator vector for each observation x_i , such that $z_{ki} = 1$ if the k-th coin is chosen, and 0 otherwise, $k = \{1, 2\}$. For the dataset, we have $Z = \{z_i\}_{i=1}^N$.

(b) Write down the expression for the log-likelihood $\log p(X, Z | \theta_1, \theta_2, \pi_1)$.

Solution

Notice that for this question, there is a few "dimension", there is the probability of head, the probability of seeing coin 1 or coin 2, and there is the variable of seeing what the k^{th} coin is. So we are making this problem of talking about just one random variable of observing x_i from X into a chain of random variable of observing x_i from X given that we are looking at $z_{ki} = 1$ trial.

To incorporate the latent variable $Z = \{z_i\}_{i=1}^N$, where $z_i = (z_{1i}, z_{2i})$ is an indicator vector such that $z_{ki} = 1$ if the k-th coin is chosen and 0 otherwise $(k \in \{1, 2\})$, we need to enumerate over all the possible combination between Z and X. Furthermore, z_{ki} need to serve as an indicator of whether the function takes value at all for the $i^{\text{th}} Z$ latent variable. We can utilize properties of exponential where if $z_{ki} = 1$, the function contributes and if $z_{ki} = 0$, then the function takes 1 and does not contribute. This can be written as.

$$p(X, Z \mid \theta_1, \theta_2, \pi_1) = \prod_{i=1}^N \prod_{k=1}^2 \left[\pi_k \theta_k^{x_i} (1 - \theta_k)^{1 - x_i} \right]^{z_{ki}}$$

We can take the log-likelihood by the following:

$$\log p(X, Z \mid \theta_1, \theta_2, \pi_1) = \sum_{i=1}^{N} \sum_{k=1}^{2} z_{ki} \left[\log \pi_k + x_i \log \theta_k + (1 - x_i) \log(1 - \theta_k) \right]$$

Here, π_k represents the **prior probability** of selecting the k-th coin (or just in general how likely it is to select the k^{th} coin (not in terms of the chain of trial but which number of coin is selected)). This whole expression can be deemed as taking the **expectation** with regarding to the latent distribution of z. However, this problem becomes intractable, which is why we need to use EM to solve it.

Remember that in the **most generalized version of EM**, we have an hidden Z distribution that we don't know, we assume that our data distribution X depends on this hidden distribution of Z. Since we don't know about this hidden, we can't just maximize this partial log-likelihood directly (problem becomes intractable), which is why we want to **infer** what such Z distribution is (E-step), then maximize (M-step) it.

- (a) Expect an q (expected posterior) distribution from what we know in our data.
- (b) Maximize under the assumption that our q distribution is correct.

(c) **E-step:** Let $\theta_1^{t-1}, \theta_2^{t-1}, \pi_1^{t-1}$ be the parameter estimation given by the t-1 iteration of the EM algorithm. Derive $p(z_{ki} = 1 | x_i, \theta_1^{t-1}, \theta_2^{t-1}, \pi_1^{t-1}), k = \{1, 2\}.$

Solution

In the E-step (usually the hard part), we want to derive the **posterior probability** (given all observation, how likely it is for coin k to be selected at trial i). We want to know the probability of the latent being 1 (number k^{th} coin getting chosen) given the random variable (observation), and previous probability of coin-1-head, coin-2-head, and coin-1-showing. We can decompose the previous notion by using **Bayes' Rule**:

$$p(z_{ki} = 1 \mid x_i, \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \frac{p(z_{ki} = 1, x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)})}{p(x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)})}$$

We can derive the **numerator** by looking at the **joint distribution** (seeing k^{th} coin with the observation) through using prior probabilistic distribution of seeing the k^{th} coin in the **previous** trial $(\pi_k^{(t-1)})$ and the likelihood $(p(x_i \mid \theta_k^{(t-1)}))$ derived from the observation of the previous trial:

$$p(z_{ki} = 1, x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \pi_k^{(t-1)} \cdot p(x_i \mid \theta_k^{(t-1)})$$

where the likelihood is simply expressed as a Bernoulli distribution (since we are talking about the probability of seeing certain variable in a sequence of binary decisions):

$$p(x_i \mid \theta_k^{(t-1)}) = (\theta_k^{(t-1)})^{x_i} (1 - \theta_k^{(t-1)})^{1 - x_i}$$

Notice that this expression is highly alike the probability distribution that we derived earlier, just that this is a particular instance in the chain now instead of the general expression we described earlier.

$$p(X, Z \mid \theta_1, \theta_2, \pi_1) = \prod_{i=1}^{N} \prod_{k=1}^{2} \left[\pi_k \theta_k^{x_i} (1 - \theta_k)^{1 - x_i} \right]^{z_{ki}}$$

Continues on next page...

Solution

Continues from previous page...

Now we have the joint distribution, we need to focus on the **denominator**, the **marginal probability** $p(x_i | \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)})$, which is the **total probability** it of observing x_i (which we have derived the general expression earlier in the joint distribution already):

$$p(x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \sum_{k=1}^2 p(z_{ki} = 1, x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)})$$

Notice that this inner component is something that we have derived before, which is:

$$p(x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \sum_{k=1}^2 \pi_k^{(t-1)} \cdot p(x_i \mid \theta_k^{(t-1)})$$

This is sort of summing all the prior probabilistic distribution of seeing coin k with a likelihood weighting term.

$$p(x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \sum_{k=1}^2 \pi_k^{(t-1)} \cdot p(x_i \mid \theta_k^{(t-1)}).$$

Specifically for k = 2 condition :

$$p(x_i \mid \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \left[(\pi_1^{(t-1)}) \cdot p(x_i \mid \theta_1^{(t-1)}) \right] + \left[(1 - \pi_1^{(t-1)}) \cdot p(x_i \mid \theta_2^{(t-1)}) \right]$$

Substituting the above expressions we get with marginal distribution and the joint distribution, we would get the following. For $k \in \{1, 2\}$, the posterior probability is:

$$p(z_{ki} = 1 \mid x_i, \theta_1^{(t-1)}, \theta_2^{(t-1)}, \pi_1^{(t-1)}) = \frac{\pi_k^{(t-1)} \cdot (\theta_k^{(t-1)})^{x_i} (1 - \theta_k^{(t-1)})^{1 - x_i}}{\sum_{j=1}^2 \pi_j^{(t-1)} \cdot (\theta_j^{(t-1)})^{x_i} (1 - \theta_j^{(t-1)})^{1 - x_i}}$$

and we should construct our E-step based on this expression above.

(d) **M-step:** Show that

$$\pi_1^t = \frac{N_1}{N},$$

where N_1 is the number of trials the first coin is chosen in the *t*-th iteration of the EM algorithm. Notice that π_1^t is essentially the probability of observing coin 1 at trial *t*. We essentially want to conduct an MLE on the likelihood function of $Q(\pi_1, \theta_1, \theta_2)$ (adjusting variables such that we get the maximum probability of observing π_1).

Solution

To update π_1 in the M-step, we maximize the expected complete data loglikelihood. The complete data log-likelihood is given by (notice that this is sort of taking the **expectation** with regard to the latent distribution):

$$\log p(X, Z \mid \pi_1, \theta_1, \theta_2) = \sum_{i=1}^{N} \sum_{k=1}^{2} z_{ki} \left[\log \pi_k + x_i \log \theta_k + (1 - x_i) \log(1 - \theta_k) \right].$$

Or just that:

$$Q(\pi_1, \theta_1, \theta_2) = \mathbb{E}_{z_{ki}} \left[\log p(X, Z \mid \pi_1, \theta_1, \theta_2) \right]$$

Since the latent variables Z are not observed, we compute the expected complete data log-likelihood over the posterior distribution of Z that we retrieved from the E-step. The posterior probabilities are:

$$q_{ki} = p(z_{ki} = 1 \mid x_i, \pi_1^{t-1}, \theta_1^{t-1}, \theta_2^{t-1})$$

where q_{ki} is our build-up expected value of z_{ki} . Taking the expectation under our q_{ki} distribution, we replace z_{ki} with q_{ki} :

$$Q(\pi_1, \theta_1, \theta_2) = \mathbb{E}_{q_{ki}} \left[\log p(X, Z \mid \pi_1, \theta_1, \theta_2) \right]$$

Substituting the expectation of distribution q_{ki} into the complete data loglikelihood:

$$Q(\pi_1, \theta_1, \theta_2) = \log p(X, Z \mid \pi_1, \theta_1, \theta_2) = \sum_{i=1}^{N} \sum_{k=1}^{2} q_{ki} \left[\log \pi_k + x_i \log \theta_k + (1 - x_i) \log(1 - \theta_k) \right]$$

This Q function represents the expected complete data log-likelihood, which is what we usually maximized during the M-step to update the parameters $\pi_1, \theta_1, \theta_2$.

Continue on next page...

Solution

Continue from previous page...

For the sake of this question, we need simplification. Again, we essentially want to conduct an MLE on the likelihood function of $Q(\pi_1, \theta_1, \theta_2)$ (adjusting variables such that we get the maximum probability of observing π_1). Simplifying $Q(\pi_1, \theta_1, \theta_2)$, we can separate the terms involving π_k , θ_1 , and θ_2 since we don't care about the rest k coins.

$$Q(\pi_1, \theta_1, \theta_2) = \sum_{i=1}^{N} \left[q_{1i} \log \pi_1 + q_{2i} \log(1 - \pi_1) \right] + \sum_{i=1}^{N} \sum_{k=1}^{2} q_{ki} \left[x_i \log \theta_k + (1 - x_i) \log(1 - \theta_k) \right]$$

Notice that we have separated out just the terms for only π_q involved in it. So we can write just $Q(\pi_1)$ since we only want to know about π_1^t (the probability of seeing coin 1 at the t^{th} iteration), we can throw away the rest of the terms since we are not talking about any coins that is not 1 and nor are we talking about head or tail probability:

$$Q(\pi_1) = \sum_{i=1}^{N} q_{1i} \log \pi_1 + \sum_{i=1}^{N} q_{2i} \log(1 - \pi_1),$$

Taking the derivative of $Q(\pi_1)$ with respect to π_1 :

$$\frac{\partial Q}{\partial \pi_1} = \frac{\sum_{i=1}^N q_{1i}}{\pi_1} - \frac{\sum_{i=1}^N q_{2i}}{1 - \pi_1}$$

Set $\frac{\partial Q}{\partial \pi_1} = 0$:

$$\pi_1 \sum_{i=1}^{N} q_{2i} = (1 - \pi_1) \sum_{i=1}^{N} q_{1i}$$

Continues on next page...

Solution

Continued from last page...

Since we only have two coins, we can use the fact that the expected number of times that coin 2 would be chosen is the total number of chooses minus the expected number of times that coin 1x is chosen: $\sum_{i=1}^{N} q_{2i} = N - \sum_{i=1}^{N} q_{1i}$. When substituting, we get that:

$$\pi_1(N - \sum_{i=1}^N q_{1i}) = (1 - \pi_1) \sum_{i=1}^N q_{1i}$$

Expand and collect terms:

$$\pi_1 N = \sum_{i=1}^N q_{1i}$$

Solve for π_1 :

$$\pi_1 = \frac{\sum_{i=1}^N q_{1i}}{N}$$

Define $N_1 = \sum_{i=1}^{N} q_{1i}$, which is the expected number of trials where the first coin is chosen (following problem definition), we would get that:

$$\pi_1^t = \frac{N_1}{N}$$

The proof is thus complete.