
‭Addiction as a Computational Process Gone Awry‬

‭Striatum incorporates environmental state sensory/motor‬
‭information from the cortex -> adjusts weights on the actions‬
‭depending on the dopamine RPE from VTA -> striatum‬
‭outputs selected action back to cortex -> influences‬
‭movements, decision-making, and further reward processing.‬

‭These processing steps are exactly the actor critic model‬
‭-‬ ‭Dorsal striatum learns how to output.‬
‭-‬ ‭Ventral striatum learns the values of objects from‬

‭reward error signals and helps the dorsal striatum to‬
‭learn the outputs.‬

‭If the brain mechanism really works like TD updates structurally, we can use the same TD‬
‭structure to model and understand compulsive behaviors better.‬

‭Addicted TDAgent Theory‬
‭The dopamine error signal is not equivalent to pleasure; instead, it is an‬‭internal signal‬
‭indicative of the discrepancy between expectations and observations‬‭.‬

‭-‬ ‭The agent selects actions proportional to the expected benefit that would be accrued‬
‭from taking the action (from behavior matching law)‬



‭-‬ ‭Because‬ ‭transfers‬‭backward from reward states‬‭to anticipatory states with learning,‬δ
‭actions can be chained together‬‭to learn sequences. This is the heart of the TDRL‬
‭algorithm.‬

‭-‬ ‭Action selection then would be counted as happens in a semi-Markov state space.‬

‭Usually speaking, phasic increases in dopamine are seen after unexpected natural rewards;‬
‭however,‬‭with learning, these phasic increases shift from the time of reward delivery to‬
‭cueing stimuli‬‭. Transient increases in dopamine are now thought to signal changes in the‬
‭expected future reward (i.e., unexpected changes in value). These increases can occur either‬
‭with unexpected reward or with unexpected cue stimuli known to signal reward and have been‬
‭hypothesized to signal‬ ‭.‬δ

‭Normally speaking once the value function correctly predicts the reward, learning stops. The‬
‭value function can be said to compensate for the reward: The change in value in taking action‬
‭would counter-balances the reward achieved on entering the next state. When this happens,‬ ‭=‬δ
‭0. In another word,‬‭taking transient dopamine as the d signal correctly predicted rewards‬
‭produces no dopamine signal‬‭.‬

‭However, Cocaine produce a transient increase in dopamine through‬‭neuropharmacological‬
‭mechanisms‬‭, producing dopamine surge that can be modeled by assuming that these drugs‬
‭induce an increase in‬ ‭that cannot be compensated by changes in the value. The effect of‬δ
‭addictive drugs is to‬‭produce a positive‬ ‭independent of the change in value function‬‭(idea‬δ
‭inspired by neuropharmacological mechanisms), making it impossible for the agent to learn a‬
‭value function that will cancel out the drug-induced increase in‬ ‭and the constant increases‬δ
‭approaches values to infinity.‬

‭-‬ ‭Values of states leading to natural rewards asymptotically approach a finite value (the‬
‭discounted, total expected future rewards, approximated by TD update), leading to‬
‭asymptotic balances.‬

‭-‬ ‭Values of states leading to drug receipt increase without bound.‬
‭-‬ ‭The more the agent traverses the action sequence leading to drug receipt, the larger the‬

‭value of the states leading to that sequence and the more likely the agent is to select an‬
‭action leading to those states (‬‭early use of drugs occurs because they are highly‬
‭rewarding, but this use transitions to a compulsive use with time‬‭).‬

‭-‬ ‭In reality, it is also unlikely for the value of cocaine to go to infinity. Biological‬
‭compensation mechanisms are likely to limit the maximal effect of cocaine on neural‬
‭systems, including the value representation.‬



‭Rational to Irrational Decision Perspective‬
‭The TDRL theory proposed in this paper differs from that of‬‭rational addiction‬‭where the drug‬
‭just stands for a higher value because TDRL proposes that addiction is inherently irrational: It‬
‭uses the same mechanisms as natural rewards, but the system behaves in a nonoptimal way‬
‭because of neuropharmacological effects on dopamine and the value function cannot‬
‭compensate for the D(s) component, the D(s) component eventually overwhelms the R(s)‬
‭reward terms. Eventually, the agent behaves irrationally and rejects the larger rewards in favor‬
‭of the (less rewarding) addictive stimulus.‬

‭Dopamine and Delta both as “Wanting”‬
‭The value function is a means of guiding decisions and thus is more similar to‬‭wanting than to‬
‭liking in the terminology of Robinson and Berridge‬‭. In TDRL, dopamine does not directly‬
‭encode wanting, but because learning an appropriate value function depends on an accurate d‬
‭signal, dopamine will be necessary for acquisition of wanting.‬

‭Harder Extinction Biologically‬
‭In normal TDRL, the value of states leading to reward decay back to zero when that reward is‬
‭not delivered. This follows from the existence of a strongly negative d signal in the absence of‬
‭expected reward. Although firing of dopamine neurons is inhibited in the absence of expected‬
‭reward, the inhibition is dramatically less than the corresponding excitation. In general, the‬
‭simple decay of value seen in TDRL  does not model extinction very well, particularly in terms of‬
‭reinstantiation after extinction.‬

‭Simulation of Addictive TDAgent (Value & Dopamine Error)‬

‭First Trial Value & Dopamine Error Signal‬
‭The value of a given state and the dopamine error response both peak at state 8, which is the‬
‭state leading into the reward state, indicating a big error in prediction due to the unexpected‬
‭reward stage. As for the value graph, the agent learns the value of the state leading to the‬
‭reward state as a high value state since the TD update equation of a current state is updated‬
‭with the next state’s value.‬



‭Last Trial Value & Dopamine Error Signal‬
‭This represents a more stable understanding of the environment where the value forms‬
‭a linear rise with the increases in state and has a sharp drop exactly at the reward state‬
‭(because the next state is zero value). On the other hand, the dopamine prediction‬
‭error is a much smoother curve where there is a higher positive prediction error in the‬
‭starts of the state and then lowers the errors in the later states.‬

‭1.‬ ‭This might be caused by the fact that it is closer to make more correct‬
‭predictions as it is closer to the reward state and it gets harder to understand‬
‭the values when the states gets more distance from the actual rewarding state,‬
‭the “signal” is a lot less strong and it becomes harder to predict the actual‬
‭correct value of the state (temporal nature).‬

‭2.‬ ‭Moreover, because later states’ value is essentially carried away by the reward‬
‭directly, it is easier to estimate the values. However, it becomes harder in the‬
‭beginning because the estimates would depend on the prediction value of the‬
‭future state, which is not as stable of a signal to use as the reward itself.‬



‭Learning Rate Heat Map Across Trials‬
‭Since the environment in this condition is not super complex, as the learning rate‬
‭increases, the agent is able to achieve a good understanding of the environment faster.‬
‭Same is reflected on the heat map:‬

‭1.‬ ‭As getting closer to the reward state, the reward signal becomes stronger (more‬
‭yellow), this is the same with previous line plots.‬

‭2.‬ ‭As the learning rate increases, the agent is able to build a robust understanding‬
‭of the environment faster (0.05 agent is having a hard time understanding earlier‬
‭states even at later trials while the 0.9 agent is able to grasp the understanding‬
‭earlier in trials)‬

‭a.‬ ‭Earlier states (further from reward states) are also harder to learn the‬
‭values of as demonstrated in the previous question.‬

‭3.‬ ‭The highest error prediction is around the time of the reward in earlier trials, just‬
‭as demonstrated previously. Gradually the prediction error, even for the low‬
‭learning rate ones, drops to zero around the reward.‬

‭4.‬ ‭The increase in learning rate makes the drop of the prediction error around the‬
‭reward state really quickly.‬



‭Discount Rate Heat Map Across Trials‬
‭The higher the discount rate, the more valuable the later state would impact the‬
‭previous state's value. As can be seen from the state value over trials heat map, higher‬
‭gamma value would lead to faster and sharper updates in the state values as there is a‬
‭strong consideration for the future reward, so the whole sequences of states would be‬
‭sequentially more activated getting closer to the reward. Under the same logic, RPE‬
‭would initially be higher for the states leading up to the reward state because there is a‬
‭surprising stronger correlation between the earlier states and the later reward.‬

‭On the other hand, a low discount rate would mean that future reward doesn’t matter‬
‭as much for earlier states and it is reflected by the state value graph where earlier‬
‭states would not be activated on heat map at all as it is not considering later reward at‬
‭all (initialized value at 0). Only the very near state next to the state prior to the reward‬
‭state (state 7) would have value activation. Similarly, the RPE graph would only have‬
‭unexpected surprising value errors only on the state prior to the reward state as that is‬
‭the only one that has a difference from expectation (originally all the state values start‬
‭from 0, so there would be no change in the expected value of earlier stages, hence no‬
‭RPE signals).‬



‭Addictive/Normal Agent First, Last, and Mean Trial‬

‭No matter for the first trial, last trial, or the mean trial value, the addicted model is‬
‭always getting higher values, which is an effect caused by the drug state reward‬
‭propagating backward to the earlier state (can be seen from the last trial and mean trail‬
‭graph for state values, the tail indicate that the reward is been propagated back to the‬
‭earlier state and the closer a state gets to the drug state, the higher the reward it‬
‭would be.‬

‭-‬ ‭The same can be noticed from the first two graphs, when the normal agent‬
‭maintains a linear relationship of values taking up to the reward, the addicted‬
‭agent forms a skewed relationship between values and states leading up to the‬
‭reward states and the values are a lot higher in comparison.‬



‭From the RPE graph, the addicted agent would maintain a continuously positive‬
‭prediction error from the time of cue to the drug state because the the values of the‬
‭values of any states would increase until infinity from the reward back propagation‬
‭effect of the constantly increasing reward of drug state (always a plus to the expected‬
‭values), neglecting the functional structure of the TD update and the termination of‬
‭learning when reward is achieved.‬

‭-‬ ‭Learning goes on continuously until infinity in a wrong direction , anticipating‬
‭more and more rewards, no stops when rewarded , never being satisfied from‬
‭the reward.‬

‭Manual TDAgent Solving‬
‭The values of each stage since the cue are updated from the reward drug state back to‬
‭the time of the cue -> propagation backward.‬

‭1.‬ ‭The values actually all initially start at zero for t=0 to t=4, but gradually there would be an‬
‭increase that propagates backward due to cocaine, even when reward is not presented‬
‭at state t=0 to t=4.‬

‭2.‬ ‭Values for state 5 (drug stage) gradually increase constantly, natural reward does not‬
‭increase, no reinforcing, continuously increasing reward in the cocaine case.‬

‭3.‬ ‭Reward propagates backward and, the closer the state is to the drug state, the higher‬
‭the state value would be.‬

‭4.‬ ‭Maintain a continuously positive prediction error from the time of cue to the drug state ->‬
‭the values increase until infinity, neglecting the functional structure of the TD update.‬

‭5.‬ ‭“Learning” goes on continuously, anticipating more and more rewards, no stops when‬
‭rewarded , never being satisfied from the reward.‬

‭6.‬ ‭Without external help, no value function can be learned to actually counteract the effect‬
‭of the drug. Only when a large value exists for alternative choice, alternatives may be‬
‭taken.‬


