
Constrained Gradient Descent And Variants

November 19, 2024

1 Different Perspective of Gradient Descent: Constrained Opti-
mization & Variants of Gradient Descent Re-derived from Tay-
lor Theory

[37]: import numpy as np
from tensorflow.keras.datasets import mnist
import matplotlib.pyplot as plt

Goal is to differentiate number 4’s and number 9’s in the MNIST data set

[38]: def load_mnist_4_and_9():
'''Load MNIST data with only 4 and 9 digits'''
(x_train, y_train), (x_test, y_test) = mnist.load_data()

Filter for 4 and 9 digits
mask_train = np.isin(y_train, [4, 9])
mask_test = np.isin(y_test, [4, 9])
x_train, y_train = x_train[mask_train], y_train[mask_train]
x_test, y_test = x_test[mask_test], y_test[mask_test]

Flatten and normalize data
x_train, x_test = x_train.reshape((-1, 784)) / 255.0, x_test.reshape((-1,␣

↪784)) / 255.0
y_train = np.where(y_train == 4, 0, 1)
y_test = np.where(y_test == 4, 0, 1)
return x_train, y_train, x_test, y_test

2 Objective Functions
The objective function (F(w)) for logistic regression is:

𝐹(𝑤) = 1
𝑁

𝑁
∑
𝑖=1

log(1 + 𝑒−𝑦𝑖⟨𝑤,𝑥𝑖⟩)

where: - $ N $ is the number of training samples, - $ y_i $ is the label for sample $ i $ (1 or -1), -
$ x_i $ is the feature vector for sample $ i $, - $ w $ is the weight vector.

1

[39]: def binary_cross_entropy_loss(w, X, y):
'''Binary cross entropy loss and gradient'''
logits = X @ w
predictions = 1 / (1 + np.exp(-logits))
loss = -np.mean(y * np.log(predictions + 1e-8) + (1 - y) * np.log(1 -␣

↪predictions + 1e-8))
grad = X.T @ (predictions - y) / len(y)
return loss, grad

def logistic_loss(w, X, y):
margins = y * (X @ w)
loss = np.mean(np.log(1 + np.exp(-margins)))
grad = -np.mean((y / (1 + np.exp(margins)))[:, np.newaxis] * X, axis=0)
return loss, grad

3 L-2 Gradient Descent
The update rule for pure gradient descent is:

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝜇∇𝐹(𝑤(𝑡))

[40]: def gradient_descent(X, y, step_size=1e-4, num_iterations=2000):
'''Vanilla gradient descent with logistic loss'''
w = np.zeros(X.shape[1])
losses = []
for t in range(num_iterations):

loss, grad = logistic_loss(w, X, y)
w -= step_size * grad
losses.append(loss)

return w, losses

4 L-2 BackTracking LineSearch Gradient Descent
The Armijo condition for gradient descent is:

𝐹(𝑤(𝑡) − 𝜇∇𝐹(𝑤(𝑡))) ≤ 𝐹(𝑤(𝑡)) − 𝑐 ⋅ 𝜇‖∇𝐹(𝑤(𝑡))‖2

where $ c $ is a small constant, $ �$ is the step size, and $ |�F(w(t))| $ represents the norm of the
gradient at $ w(t) $.

[41]: def gradient_descent_armijo(X, y, initial_step_size=1e-2, num_iterations=2000,␣
↪beta=0.8, c=0.1, max_while_iters=10):

"""Armijo condition constrained Backtracking LineSearch gradient descent␣
↪with logistic loss."""

w = np.zeros(X.shape[1])

2

losses = []

for t in range(num_iterations):
loss, grad = binary_cross_entropy_loss(w, X, y)
step_size = initial_step_size
while_iters = 0 # Track number of while-loop iterations

Armijo condition line search
while while_iters < max_while_iters:

new_w = w - step_size * grad
new_loss, _ = binary_cross_entropy_loss(new_w, X, y)
if new_loss <= loss - c * step_size * np.sum(grad**2):

break
step_size *= beta
while_iters += 1

Check if Armijo condition was not met after maximum attempts
if while_iters == max_while_iters:

print("Warning: Armijo condition not satisfied within maximum␣
↪iterations.")

if t % 100 == 0:
print(f'Learning rate at {t} is {step_size}')

Update weights
w = new_w
losses.append(loss)

return w, losses

5 L-Inf Gradient Descent
L-inf Gradient descent is defiend as the following and uses this “gradient”:

Notice that these are analytical answer derived from the constrained GD problem

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝜇𝑝(𝑡)

Where

𝑝(𝑡) = sign(∇𝐹(𝑤(𝑡))) ⋅ ‖∇𝐹(𝑤(𝑡))‖1

Duo with the L1 norm problem: 1. We uniformally step towards all directions in the vector

[42]: def l_inf_gradient_descent(X, y, step_size=1e-6, num_iterations=2000):
''' L∞ Gradient Descent'''

w = np.zeros(X.shape[1])

3

losses = []
for t in range(num_iterations):

loss, grad = logistic_loss(w, X, y)
p = np.sign(grad) * np.linalg.norm(grad, ord=1)
w -= step_size * p
losses.append(loss)

return w, losses

6 L-1 Gradient Descent
L-one Gradient descent is defiend as the following and uses steps:

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝜇𝑝(𝑡)

Where

𝑝(𝑡) = sign(∇𝑗∗𝐹(𝑤(𝑡))) ⋅ ‖∇𝐹(𝑤(𝑡))‖∞𝑒𝑗∗

Respect the axis, jig-saw coordinate descent, instead of looking at a sphere, we look at a
trainagle 1. Step direction is sparse 2. At each step we only step towards one direction in the
vector

[43]: def l1_gradient_descent(X, y, step_size=1e-4, num_iterations=2000):
'''L1 Gradient Descent (Coordinate Descent)'''

w = np.zeros(X.shape[1])
losses = []
frequency_counter = np.zeros(X.shape[1])

for t in range(num_iterations):
loss, grad = logistic_loss(w, X, y)
j_star = np.argmax(np.abs(grad)) # index of max gradient entry
p = np.zeros(X.shape[1])
p[j_star] = np.sign(grad[j_star]) * np.linalg.norm(grad, ord=np.inf) #␣

↪L1 norm, step in only one direction
w -= step_size * p
losses.append(loss)

Track which max grad index that was selected
frequency_counter[j_star] += 1

return w, losses, frequency_counter

7 Gradeint Descent With Momentum
The momentum-based update rule is given by:

4

𝑥(𝑡+1) = 𝑥(𝑡) − 𝜇∇𝑓(𝑥(𝑡)) + 𝛽 (𝑥(𝑡) − 𝑥(𝑡−1))

Where: - 𝑥(𝑡) represents the parameter vector at iteration 𝑡, - 𝜇 is the learning rate, - ∇𝑓(𝑥(𝑡)) is
the gradient of the loss function with respect to 𝜒(𝑡), - 𝛽 is the momentum coefficient, - 𝑥(𝑡−1) is
the parameter vector from the previous iteration.

[44]: def momentum_gradient_descent(X, y, step_size=1e-5, momentum=0.9,␣
↪num_iterations=2000):

"""
Gradient Descent with Momentum
"""
w = np.zeros(X.shape[1])
velocity = np.zeros(X.shape[1]) # first iter velocity is 0, start getting␣

↪after second iter
losses = []

for _ in range(num_iterations):
loss, grad = logistic_loss(w, X, y)
velocity = momentum * velocity + step_size * grad
w -= velocity
losses.append(loss)

return w, losses

8 Gradient Descent With Nestrov Acceleration
The Nesterov Accelerated Gradient Descent (NAG) algorithm updates weights in two steps:

1. Lookahead step: Following the velocity to walk a bit more

𝑦(𝑡+1) = 𝑥(𝑡) + 𝛽 (𝑥(𝑡) − 𝑥(𝑡−1))

Here, 𝑦(𝑡+1) is the “lookahead” position, where:

2. Update step:
𝑥(𝑡+1) = 𝑦(𝑡+1) − 𝜇∇𝑓(𝑦(𝑡+1))

[53]: def nesterov_accelerated_gradient_descent(X, y, step_size=1e-5, momentum=0.9,␣
↪num_iterations=2000):

"""
Gradient Descent with Nesterov Acceleration
"""
x = np.zeros(X.shape[1])
velocity = np.zeros(X.shape[1])
losses = []

for _ in range(num_iterations):

5

Look ahead using momentum
lookahead_y = x - momentum * velocity

Compute loss and gradient at the look-ahead position
loss, grad = logistic_loss(lookahead_y, X, y)
velocity = momentum * velocity + step_size * grad
w -= velocity
losses.append(loss)

return w, losses

9 Execution
[46]: x_train, y_train, x_test, y_test = load_mnist_4_and_9()

_, l_inf_losses = l_inf_gradient_descent(x_train, y_train)
_, l1_losses, frequency_counter = l1_gradient_descent(x_train, y_train)
_, l2_losses = gradient_descent(x_train, y_train)

[47]: _, na_losses = nesterov_accelerated_gradient_descent(x_train, y_train)
_, m_losses = momentum_gradient_descent(x_train, y_train)

[48]: _, btls_losses = gradient_descent_armijo(x_train, y_train)

Learning rate at 0 is 0.01
Learning rate at 100 is 0.01
Learning rate at 200 is 0.01
Learning rate at 300 is 0.01
Learning rate at 400 is 0.01
Learning rate at 500 is 0.01
Learning rate at 600 is 0.01
Learning rate at 700 is 0.01
Learning rate at 800 is 0.01
Learning rate at 900 is 0.01
Learning rate at 1000 is 0.01
Learning rate at 1100 is 0.01
Learning rate at 1200 is 0.01
Learning rate at 1300 is 0.01
Learning rate at 1400 is 0.01
Learning rate at 1500 is 0.01
Learning rate at 1600 is 0.01
Learning rate at 1700 is 0.01
Learning rate at 1800 is 0.01
Learning rate at 1900 is 0.01

6

10 Plot the loss over iterations
[49]: plt.figure(figsize=(9, 5))

plt.plot(l2_losses, label="L2 Gradient Descent")
plt.plot(btls_losses, label="L2 BTLS Gradient Descent")
plt.plot(l_inf_losses, label="L∞ Gradient Descent")
plt.plot(l1_losses, label="L1 Gradient Descent (Coordinate)")
plt.plot(na_losses, label="Nesterov Accelerated Gradient Descent")
plt.plot(m_losses, label="Momentum Gradient Descent")
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.title("Loss over 2000 Iterations for L∞, L1, L2, BTLS L2, Momentum, and N.A.

↪ Gradient Descent")
plt.legend()
plt.show()

[50]: x_train, y_train, x_test, y_test = load_mnist_4_and_9()
num_iterations = 100
_, l_inf_losses_100 = l_inf_gradient_descent(x_train, y_train,␣

↪num_iterations=num_iterations)
_, l1_losses_100, frequency_counter = l1_gradient_descent(x_train, y_train,␣

↪num_iterations=num_iterations)
_, l2_losses_100 = gradient_descent(x_train, y_train,␣

↪num_iterations=num_iterations)

7

_, na_losses_100 = nesterov_accelerated_gradient_descent(x_train, y_train,␣
↪num_iterations=num_iterations)

_, m_losses_100 = momentum_gradient_descent(x_train, y_train,␣
↪num_iterations=num_iterations)

_, btls_losses_100 = gradient_descent_armijo(x_train, y_train,␣
↪num_iterations=num_iterations)

Learning rate at 0 is 0.01

[51]: plt.figure(figsize=(9, 5))
plt.plot(l2_losses_100, label="L2 Gradient Descent")
plt.plot(btls_losses_100, label="L2 BTLS Gradient Descent")
plt.plot(l_inf_losses_100, label="L∞ Gradient Descent")
plt.plot(l1_losses_100, label="L1 Gradient Descent (Coordinate)")
plt.plot(na_losses_100, label="Nesterov Accelerated Gradient Descent")
plt.plot(m_losses_100, label="Momentum Gradient Descent")
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.title("Loss over 100 Iterations for L∞, L1, L2, BTLS L2, Momentum, and N.A.␣

↪Gradient Descent")
plt.legend()
plt.show()

8

11 Reshape and plot the frequency counter as a 28x28 image:
Pixels chosen frequently (most grad) are likely those that have the most impact on distin-
guishing between the digits 4 and 9. The frequency map reveals which parts of the image
space (such as specific strokes) are most informative for classification.

[52]: frequency_image = frequency_counter.reshape(28, 28)
plt.imshow(frequency_image, cmap="hot", interpolation="nearest")
plt.colorbar()
plt.title("Pixel Selection Frequency in L1 Gradient Descent")
plt.show()

[]:

9

	Different Perspective of Gradient Descent: Constrained Optimization & Variants of Gradient Descent Re-derived from Taylor Theory
	Objective Functions
	L-2 Gradient Descent
	L-2 BackTracking LineSearch Gradient Descent
	L-Inf Gradient Descent
	L-1 Gradient Descent
	Gradeint Descent With Momentum
	Gradient Descent With Nestrov Acceleration
	Execution
	Plot the loss over iterations
	Reshape and plot the frequency counter as a 28x28 image:

