DSC 190 Machine Learning with Few Labels

KL Divergence

Show that

is always non-negative.
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To show this property of KL divergence, we can start by manipulating this expression:

This is essentially a expectation term, which can be written as:

We can apply Jensen’s inequality for a convex function:

For a concave function f(x) = log(x), Jensen’s inequality would be flipped:

Applying to the original function, we have:
Thus, combining the terms:

Notice that we can rewrite this in:

We can rewrite this in summation form again:
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ELBO + KL Proof

Given a dataset D = {z}, for each individual data point z, the ELBO on the marginal
likelihood of x is given by
p(x|0) > L(q,0; )

where
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Show that

log p(2]0) = Eqz1z) {log pfj};ﬁl)&)l + KL(q(z|z)||p(z|z,0)).
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We know that the log marginal likelihood of the data x given parameter 6 is the
following. Based on our assumption of a hidden z distribution that maps z — 2z we
can frame it as a expectation under the hidden ¢(z) distribution:

log p(z]0) = Eq(2)[log p(x|0)]

We can use the Bayesian rule to expand p(z|6) using the joint distribution p(z, z|6)
and the posterior p(z|x):

p(z, ZIG)}
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Introduce the variational distribution ¢(z) by multiplying and dividing the same ¢(z):
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log p(x]0) = Eq) {log

log p(z|0) = Eq(z) [log <

Simplify the logarithm into the expression:

x, 2|0 z
log p(]0) = Eq(z) {log P, )] + Ey(z) {log 19 }

q(2) p(zlz,0)
The first term is the Evidence Lower Bound (ELBO) as defined in the question above:
p(z, ZIQ)}
ELBO = E,.) |log = L(q,0;x
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The second term is the KL divergence (from definition of KL divergence) between
q(z|z) and the true posterior p(z|x):

q(2)
p(z|z)

Ey {log } — KL(g()lp(zle, 6))

Combine the terms:
log p(z|0) = ELBO + K L(q(2)|p(z|z, 0))

Rearranging, the ELBO is:
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Thus, we can conclude that:
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