
DSC 190 Machine Learning with Few Labels

KL Divergence

Show that

KL(p(x)∥q(x)) =
∑
x

p(x) log
p(x)

q(x)

is always non-negative.

Solution

To show this property of KL divergence, we can start by manipulating this expression:

KL(p(x)∥q(x)) =
∑
x

p(x) log
p(x)

q(x)

This is essentially a expectation term, which can be written as:

KL(p(x)∥q(x)) = Ep(x)[log
p(x)

q(x)
]

We can apply Jensen’s inequality for a convex function:

E[f(X)] ≥ f(E[X])

For a concave function f(x) = log(x), Jensen’s inequality would be flipped:

E[f(X)] ≤ f(E[X])

Applying to the original function, we have:
Thus, combining the terms:

Ep(x)[log
p(x)

q(x)
] ≤ logEp(x)[

p(x)

q(x)
]

Notice that we can rewrite this in:

logEp(x)[
p(x)

q(x)
] = − logEp(x)[

q(x)

p(x)
]

We can rewrite this in summation form again:∑
x

p(x) log
p(x)

q(x)
≤ − log

∑
x

p(x)
q(x)

p(x)∑
x

p(x) log
p(x)

q(x)
≥ log

∑
x

p(x)
q(x)

p(x)
= log

∑
x

q(x) = log(1) = 0

Thus we can deduce that:

KL(p(x)∥q(x)) ≥ 0
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ELBO + KL Proof

Given a dataset D = {x}, for each individual data point x, the ELBO on the marginal
likelihood of x is given by

p(x|θ) ≥ L(q, θ;x)

where

L(q, θ;x) = Eq(z|x)

[
log

p(x, z|θ)
q(z|x)

]
.

Show that

log p(x|θ) = Eq(z|x)

[
log

p(x, z|θ)
q(z|x)

]
+KL

(
q(z|x)∥p(z|x, θ)

)
.
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Solution

We know that the log marginal likelihood of the data x given parameter θ is the
following. Based on our assumption of a hidden z distribution that maps x → z we
can frame it as a expectation under the hidden q(z) distribution:

log p(x|θ) = Eq(z)[log p(x|θ)]

We can use the Bayesian rule to expand p(x|θ) using the joint distribution p(x, z|θ)
and the posterior p(z|x):

log p(x|θ) = Eq(z)

[
log

p(x, z|θ)
p(z|x, θ)

]
Introduce the variational distribution q(z) by multiplying and dividing the same q(z):

log p(x|θ) = Eq(z)

[
log

(
p(x, z|θ)
q(z)

· q(z)

p(z|x, θ)

)]
Simplify the logarithm into the expression:

log p(x|θ) = Eq(z)

[
log

p(x, z|θ)
q(z)

]
+ Eq(z)

[
log

q(z)

p(z|x, θ)

]
The first term is the Evidence Lower Bound (ELBO) as defined in the question above:

ELBO = Eq(z)

[
log

p(x, z|θ)
q(z)

]
= L(q, θ;x)

The second term is the KL divergence (from definition of KL divergence) between
q(z|x) and the true posterior p(z|x):

Eq(z)

[
log

q(z)

p(z|x)

]
= KL(q(z)∥p(z|x, θ))

Combine the terms:

log p(x|θ) = ELBO +KL(q(z)∥p(z|x, θ))

Rearranging, the ELBO is:

ELBO = Eq(z)

[
log

p(x, z|θ)
q(z)

]
= log p(x|θ)−KL(q(z)∥p(z|x, θ))

Thus, we can conclude that:

log p(x|θ) = Eq(z)

[
log

p(x, z|θ)
q(z)

]
+KL

(
q(z)∥p(z|x, θ)

)
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